827
Views
16
CrossRef citations to date
0
Altmetric
Ecosystem Processes and Rehabilitation

Biological soil crusts of the Succulent Karoo: a reviewFootnote§

ORCID Icon, , & ORCID Icon
Pages 335-350 | Received 07 Mar 2018, Accepted 20 Sep 2018, Published online: 22 Nov 2018

References

  • Barger NN, Herrick JE, van Zee J, Belnap J. 2006. Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry 77: 247–263. doi: 10.1007/s10533-005-1424-7
  • Barger NN, Weber B, Garcia-Pichel F, Zaady E, Belnap J. 2016. Patterns and controls on nitrogen cycling of biological soil crusts. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 257–285.
  • Belnap J, Weber B, Büdel B. 2016. Biological soil crusts as an organizing principle in drylands. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 3–13.
  • Belnap J, Wilcox BP, van Scoyoc MV, Phillips SL. 2013. Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition. Ecohydrology 6: 474–482. doi: 10.1002/eco.1281
  • Berner T, Evenari M. 1978. The influence of temperature and light penetration on the abundance of the hypolithic algae in the Negev desert of Israel. Oecologia 33: 255–260. doi: 10.1007/BF00344852
  • Blay ES, Schwabedissen SG, Magnuson TS, Aho KA, Sheridan PP, Lohse KA. 2017. Variation in biological soil crust bacterial abundance and diversity as a function of climate in cold steppe ecosystems in the Intermountain West, USA. Microbial Ecology 74: 691–700. doi: 10.1007/s00248-017-0981-3
  • Bowker MA, Belnap J, Chaudhary VB, Johnson NC. 2008. Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts. Soil Biology and Biochemistry 40: 2309–2316. doi: 10.1016/j.soilbio.2008.05.008
  • Büdel B, Colesie C, Green TGA, Grube M, Lázaro Suau R, Loewen- Schneider K, Maier S, Peer T, Pintado A, Raggio J, Ruprecht U, Sancho L, Schroeter B, Türk R, Weber B, Wedin M, Westberg M, Williams L, Zheng L. 2014. Improved appreciation of the functioning and importance of biological soil crusts in Europe – the Soil Crust International project (SCIN). Biodiversity and Conservation 23: 1639–1658. doi: 10.1007/s10531-014-0645-2
  • Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr K, Salisch M, Reisser W, Weber B. 2009. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microbial Ecology 57: 229–247. doi: 10.1007/s00248-008-9449-9
  • Büdel B, Deutschewitz K, Dojani S, Friedl T, Darienko T, Mohr KI, Weber B. 2010. Biological soil crusts along the BIOTA Southern Africa transects. In: Schmiedel U, Jürgens N (eds), Biodiversity in southern Africa, vol. 2: Patterns and processes at regional scale. Göttingen: Klaus Hess Publishers. pp 93–99.
  • Büdel B, Dulić T, Darienko T, Rybalka N, Friedl T. 2016. Cyanobacteria and algae of biological soil crusts. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 55–80.
  • Büdel B, Vivas M, Lange OL. 2013. Lichen species dominance and the resulting photosynthetic behavior of Sonoran Desert soil crust types (Baja California, Mexico). Ecological Processes 2: 6. doi: 10.1186/2192-1709-2-6
  • Chamizo S, Cantón Y, Rodríguez-Caballero E, Domingo F. 2016. Biocrusts positively affect the soil water balance in semiarid ecosystems. Ecohydrology 9: 1208–1221. doi: 10.1002/eco.1719
  • Chan Y, van Nostrand JD, Zhou J, Pointing SB, Farrell RL. 2013. Functional ecology of an Antarctic Dry Valley. Proceedings of the National Academy of Sciences of the USA 110: 8990–8995. doi: 10.1073/pnas.1300643110
  • Clark RN, Roush TL. 1984. Reflectance spectroscopy quantitative analysis techniques for remote-sensing applications. Journal of Geophysical Research 89: 6329–6340. doi: 10.1029/JB089iB07p06329
  • Darby BJ, Neher DA. 2016. Microfauna within biological soil crusts. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 139–157.
  • Darby BJ, Neher DA, Belnap J. 2007. Soil nematode communities are ecologically more mature beneath late- than early- successional stage biological soil crusts. Applied Soil Ecology 35: 203–212. doi: 10.1016/j.apsoil.2006.04.006
  • DeLucia EH, Turnbull MH, Walcroft AS, Griffin KL, Tissue DT, Glenny D, McSeveny TM, Whitehead D. 2003. The contribution of bryophytes to the carbon exchange for a temperate rainforest. Global Change Biology 9: 1158–1170. doi: 10.1046/j.1365-2486.2003.00650.x
  • Dojani S, Büdel B, Deutschewitz K, Weber B. 2011. Rapid succession of biological soil crusts after experimental disturbance in the Succulent Karoo, South Africa. Applied Soil Ecology 48: 263–269. doi: 10.1016/j.apsoil.2011.04.013
  • Dojani S, Kauff F, Weber B, Büdel B. 2014. Genotypic and phenotypic diversity of cyanobacteria in biological soil crusts of the Succulent Karoo and Nama Karoo of southern Africa. Microbial Ecology 67: 286–301. doi: 10.1007/s00248-013-0301-5
  • Dumack K, Koller R, Weber B, Bonkowski M. 2016. Estimated abundance and diversity of heterotrophic protists in South African biocrusts. South African Journal of Science 112: Art. #2015-0302. doi: 10.17159/sajs.2016/20150302
  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U. 2012. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nature Geoscience 5: 459–462. doi: 10.1038/ngeo1486
  • Eldridge DJ, Rosentreter R. 1999. Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. Journal of Arid Environments 41: 11–12. doi: 10.1006/jare.1998.0468
  • Elliott DR, Thomas AD, Hoon SR, Sen R. 2014. Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodiversity and Conservation 23: 1709–1733. doi: 10.1007/s10531-014-0684-8
  • Ferrenberg S, Reed SC, Belnap J 2015. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proceedings of the National Academy of Sciences of the USA 112: 12116–12121. doi: 10.1073/pnas.1509150112
  • Garcia-Pichel F, Johnson SL, Youngkin D, Belnap J. 2003. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microbial Ecology 46: 312–321. doi: 10.1007/s00248-003-1004-0
  • Green TGA, Proctor MCF. 2016. Physiology of photosynthetic organisms within biological soil crusts: their adaptation, flexibility, and plasticity. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 347–381.
  • Haarmeyer DH, Luther-Mosebach J, Dengler J, Schmiedel U, Finckh M, Berger K, Deckert J, Domptail SE, Dreber N, Gibreel T et al. 2010. The BIOTA Observatories. In: Jürgens N, Haarmeyer DH, Luther-Mosebach J, Dengler J, Finckh M, Schmiedel U (eds), Biodiversity in southern Africa, vol. 1: Patterns at local scale – the BIOTA Observatories. Göttingen: Klaus Hess Publishers. pp 6–801.
  • Hu C, Liu Y 2003. Primary succession of algal community structure in desert soil. Acta Botanica Sinica 45: 917–924.
  • Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, Schrumpf M, Daniel R. 2016. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports 6: 33696. doi: 10.1038/srep33696
  • Kidron GJ, Barinova S, Vonshak A. 2012. The effects of heavy winter rains and rare summer rains on biological soil crusts in the Negev Desert. Catena 95: 6–11. doi: 10.1016/j.catena.2012.02.021
  • Kidron GJ, Vonshak A, Abeliovich A. 2008. Recovery rates of microbiotic crusts within a dune ecosystem in the Negev Desert. Geomorphology 100: 444–452. doi: 10.1016/j.geomorph.2008.01.012
  • Kidron GJ, Vonshak A, Dor I, Barinova S, Abeliovich A. 2010. Properties and spatial distribution of microbiotic rusts in the Negev Desert, Israel. Catena 82: 92–101. doi: 10.1016/j.catena.2010.05.006
  • Kunz NS, Hoffman MT, Weber B. 2012. Effects of heuweltjies and utilization on vegetation patterns in the Succulent Karoo, South Africa. Journal of Arid Environments 87: 198–205. doi: 10.1016/j.jaridenv.2012.05.007
  • Lan S, Wu L, Zhang D, Hu C. 2012. Composition of photosynthetic organisms and diurnal changes of photosynthetic efficiency in algae and moss crusts. Plant and Soil 351: 325–336. doi: 10.1007/s11104-011-0966-9
  • Lange OL, Belnap J, Reichenberger H. 1998. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology 12: 195–202. doi: 10.1046/j.1365-2435.1998.00192.x
  • Lange OL, Green TGA. 2003. Photosynthetic performance of a foliose lichen of biological soil crust communities: long-term monitoring of the CO2 exchange of Cladonia convoluta under temperate habitat conditions. Bibliotheca Lichenologica 86: 257–280.
  • Lange OL, Kidron GJ, Büdel B, Meyet A, Kilian E, Abeliovich A. 1992. Taxonomic composition and photosynthetic characteristics of the ‘biological soil crusts’ covering sand dunes in the western Negev Desert. Functional Ecology 6: 519–527. doi: 10.2307/2390048
  • Lázaro R, Cantón Y, Solé-Benet A, Bevan J, Alexander R, Sancho L, Puigdefábregas J. 2008. The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands (SE Spain) and its landscape effects. Geomorphology 102: 252–266. doi: 10.1016/j.geomorph.2008.05.005
  • Leavitt SD, Westberg M, Nelsen MP, Elix JA, Timdal E, Sohrabi M, St Clair LL, Williams L, Wedin M, Lumbsch HT. 2018. Multiple, distinct intercontinental lineages but isolation of Australian populations in a cosmopolitan lichen-forming fungal taxon, Psora decipiens (Psoraceae, Ascomycota). Frontiers in Microbiology 9: 283. doi: 10.3389/fmicb.2018.00283
  • Liu L, Liu Y, Zhang P, Song G, Hui R, Wang Z, Wang J. 2017. Development of bacterial communities in biological soil crusts along a revegetation chronosequence in the Tengger Desert, northwest China. Biogeosciences 14: 3801–3814. doi: 10.5194/bg-14-3801-2017
  • Maestre FT, Escolar C, Ladrón de Guevara M, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gonzalo B, Gallardo G. 2013. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Global Change Biology 19: 3835–3847. doi: 10.1111/gcb.12306
  • Mager DM, Hui C. 2012. A first record of biological soil crusts in the Cape Floristic Region. South African Journal of Science 108: Art. #1013. doi: 10.4102/sajs.v108i7/8.1013
  • Maier S, Muggia L, Kuske CR, Grube M. 2016. Bacteria and non-lichenized fungi within biological soil crusts. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 81–100.
  • Maier S, Schmidt TSB, Zheng L, Peer T, Wagner V, Grube M. 2014. Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodiversity and Conservation 23: 1735–1755. doi: 10.1007/s10531-014-0719-1
  • Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B. 2018. Photoautotrophic organisms control microbial abundance, diversity, and physiology in biological soil crusts. The ISME Journal 12: 1032–1046.
  • Meusel H, Tamm A, Kuhn U, Wu D, Leifke AL, Fiedler S, Ruckteschler N, Yordanova P, Lang-Yona N, Lelieveld J, Hoffmann T, Pöschl U, Su H, Weber B, Cheng Y. 2018. Emission of nitrous acid from soil and biological soil crusts represents a dominant source of HONO in the remote atmosphere in Cyprus. Atmospheric Chemistry and Physics 18: 799–813. doi: 10.5194/acp-18-799-2018
  • Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, Buckley DH. 2015. Noncyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. The ISME Journal 10: 287–298. doi: 10.1038/ismej.2015.106
  • Pointing SB. 2016. Hypolithic communities. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 199–213.
  • Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova T, Belnap J. 2012. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nature Climate Change 2: 752–755. doi: 10.1038/nclimate1596
  • Rodríguez-Caballero E, Belnap J, Büdel B, Crutzen P, Andreae MO, Pöschl U, Weber B. 2018a. Microbial surface communities on dryland soils endangered by global change. Nature Geoscience 11: 185–189. doi: 10.1038/s41561-018-0072-1
  • Rodríguez-Caballero E, Chamizo S, Roncero-Ramos B, Román R, Cantón Y. 2018b. Runoff from biocrust: a vital resource for vegetation performance on Mediterranean steppes. Ecohydrology 11: e1977. doi: 10.1002/eco.1977
  • Rodríguez-Caballero E, Escribano P, Olehowski C, Chamizo S, Hill J, Cantón Y, Weber B. 2017b. Transferability of multi- and hyperspectral optical biocrust indices. ISPRS Journal of Photogrammetry and Remote Sensing 126: 94–107. doi: 10.1016/j.isprsjprs.2017.02.007
  • Rodríguez-Caballero E, Paul M, Tamm A, Caesar J, Büdel B, Escribano P, Hill J, Weber B. 2017a. Biomass assessment of microbial surface communities by means of hyperspectral remote sensing data. Science of the Total Environment 586: 1287–1297. doi: 10.1016/j.scitotenv.2017.02.141
  • Rosentreter R, Eldridge DJ, Westberg M, Williams L, Grube M. 2016. Structure, composition, and function of biocrust lichen communities. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 121–138.
  • Sancho LG, Belnap J, Colesie C, Raggio J, Weber B. 2016. Carbon budgets of biological soil crusts at micro-, meso-, and global scales. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 287–304.
  • Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE. 2003. Community composition and photosynthesis by photoautotrophs under quartz pebbles, Southern Mojave Desert. Ecology 84: 3222–3231. doi: 10.1890/02-0549
  • Schmiedel U. 2002. The quartz fields of southern Africa: flora, phytogeography, vegetation, and habitat ecology. PhD thesis, University of Cologne, Germany.
  • Schmiedel U, Jürgens N. 2004. Habitat ecology of southern African quartz fields: studies on the thermal properties on the ground. Plant Ecology 170: 153–166. doi: 10.1023/B:VEGE.0000021661.56381.67
  • Seppelt RD, Downing AJ, Deane-Coe KK, Zhang Y, Zhang J. 2016. Bryophytes within biological soil crusts. In: Weber B, Büdel B, Belnap J (eds), Biological soil crusts: an organizing principle in drylands. Ecological Studies 226. Cham: Springer International Publishing. pp 101–120.
  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al (eds). 2013. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  • Tamm A, Caesar J, Kunz N, Colesie C, Reichenberger H, Weber B. 2018. Ecophysiological properties of three biological soil crust types and their photoautotrophs from the Succulent Karoo, South Africa. Plant and Soil 429: 127–146. doi: 10.1007/s11104-018-3635-4
  • Temina M, Kidron GJ. 2015. The effect of dew on flint and limestone lichen communities in the Negev Desert. Flora 213: 77–84. doi: 10.1016/j.flora.2015.04.005
  • Thiet RK, Boerner REJ, Nagy M, Jardine R. 2005. The effect of biological soil crusts on throughput of rainwater and N into Lake Michigans and dune soils. Plant and Soil 278: 235–251. doi: 10.1007/s11104-005-8550-9
  • Tracy CR, Streten-Joyce C, Dalton R, Nussear KE, Gibb KS, Christian KA. 2010. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environmental Microbiology 12: 592–607. doi: 10.1111/j.1462-2920.2009.02098.x
  • Veluci RM, Neher DA, Weicht TR. 2006. Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microbial Ecology 51: 189–196. doi: 10.1007/s00248-005-0121-3
  • Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhou P, McKay CP. 2007. Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiology Ecology 61: 470–482. doi: 10.1111/j.1574-6941.2007.00351.x
  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gómez-Silva B, Amundson R, Friedmann EI, McKay CP. 2006. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microbial Ecology 52: 389–398. doi: 10.1007/s00248-006-9055-7
  • Weber B, Berkemeier T, Ruckteschler N, Caesar J, Heintz H, Ritter H, Braß H. 2016. Development and calibration of a novel sensor to analyze the water content of biological soil crusts and surface soils. Methods in Ecology and Evolution 7: 14–22. doi: 10.1111/2041-210X.12459
  • Weber B, Graf T, Bass M. 2012. Ecophysiological analysis of moss-dominated biological soil crusts and their separate components from the Succulent Karoo, South Africa. Planta 236: 129–139. doi: 10.1007/s00425-012-1595-0
  • Weber B, Olehowski C, Knerr T, Hill J, Deutschwitz K, Wessels DCJ et al. 2008. A new approach for mapping of biological soil crusts in semidesert areas with hyperspectral imagery. Remote Sensing of Environment 112: 2187–2201. doi: 10.1016/j.rse.2007.09.014
  • Weber B, Wessels DCJ, Deutschewitz K, Dojani S, Reichenberger H, Büdel B. 2013. Ecological characterization of soil-inhabiting and hypolithic soil crusts within the Knersvlakte, South Africa. Ecological Processes 2: 8. doi: 10.1186/2192-1709-2-8
  • Weber B, Wu D, Tamm A, Ruckteschler N, Meusel H, Rodriguez- Caballero E, Steinkamp J, Sörgel M, Behrendt T, Cheng Y, Crutzen P, Su H, Pöschl U. 2015. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proceedings of the National Academy of Sciences of the USA 112: 15384–15389. doi: 10.1073/pnas.1515818112
  • Whitney KM, Vivoni ER, Duniway MC, Bradford JB, Reed SC, Belnap J. 2017. Ecohydrological role of biological soil crusts across a gradient in levels of development. Ecohydrology 10: e1875. doi: 10.1002/eco.1875
  • Williams TG, Flanagan LB. 1996. Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia 108: 38–46. doi: 10.1007/BF00333212
  • Zhang B, Kong W, Wu N, Zhang Y. 2016. Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert, northern China. Journal of Basic Microbiology 56: 670–679. doi: 10.1002/jobm.201500751
  • Zhang Y, Cong J, Lu H, Li G, Xue Y, Deng Y et al. 2015. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microbial Biotechnology 8: 739–746. doi: 10.1111/1751-7915.12288