53
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Rainfed-based production of Megathyrsus maximus in sub-Saharan Africa: the case of the semi-arid environment of Sudan

, ORCID Icon &
Pages 247-256 | Received 01 Apr 2022, Accepted 17 May 2022, Published online: 03 Aug 2022

References

  • Adimassu Z, Langan S, Johnston R, Mekuria W, Amede T. 2017. Impacts of soil and water conservation practices on crop yield, run-off, soil loss and nutrient loss in Ethiopia: review and synthesis. Environmental Management 59: 87–101. doi: 10.1007/s00267-016-0776-1
  • Ainsworth EA, Long SP. 2021. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology 27: 27–49. https://doi.org/10.1111/gcb.15375.
  • Alebele Y, Zhang X, Wang W, Yang G, Yao X, Zheng H, Zhu Y, Cao W, Cheng T. 2020. Estimation of canopy biomass components in paddy rice from combined optical and SAR data using multi-target Gaussian regressor stacking. Remote Sensing 12: 2564. https://doi.org/10.3390/rs12162564.
  • Allen R, Pereira L, Raes D, Smith M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. Rome: FAO Irrigation and Drainage paper, 56.
  • Arriaga FJ, Guzman J, Lowery B. 2017. Conventional agricultural production systems and soil functions. In: Al-Kaisi MM, Lowery B (Eds), Soil Health and Intensification of Agroecosytems. Academic Press. pp 109−125. https://doi.org/10.1016/B978-0-12-805317−1.00005−1.
  • Ayoub AT. 1998. Extent, severity and causative factors of land degradation in the Sudan. Journal of Arid Environments 38: 397–409. https://doi.org/10.1006/jare.1997.0346.
  • Ayoub AT. 1999. Land degradation, rainfall variability and food production in the Sahelian zone of the Sudan. Land Degradation and Development 10: 489–500. doi: 10.1002/(SICI)1099-145X(199909/10)10:5<489::AID-LDR336>3.0.CO;2-U
  • Aziz I, Mahmood T, Islam KR. 2013. Effect of long term no-till and conventional tillage practices on soil quality. Soil and Tillage Research 131: 28–35. http://doi.org/10.1016/j.still.2013.03.002
  • Benabderrahim MA, Elfalleh W. 2021. Forage potential of non-native Guinea grass in North African agroecosystems: genetic, agronomic, and adaptive traits. Agronomy 11: 1071. https://doi.org/10.3390/agronomy11061071.
  • Castelli G, Minelli A, Tefera ML, Bresci E, Hagos EY, Embaye TG, Sebhatleab M. 2017. Impacts of rainwater harvesting and rainwater management on upstream – downstream agricultural ecosystem services in two catchments of Southern Tigray, Ethiopia. Chemical Engineering Transactions 58: 685–690. https://doi.org/10.3303/CET1758115.
  • da Silva SC, Sbrissia AF, Pereira LET. 2015. Ecophysiology of C4 forage grasses — Understanding plant growth for optimising their use and management. Agriculture 5: 598–625. https://doi.org/10.3390/agriculture5030598.
  • de Araujo LC, Santos PM, Rodriguez D, Pezzopane JRM. 2018. Key factors that influence for seasonal production of Guinea grass. Scientia Agricola 75: 191–196. doi: 10.1590/1678-992x-2016-0413
  • de Oliveira JKS, Corrêa DCdC, Cunha AMQ, Rêgo ACd, Faturi C, Silva WLd, Domingues FN. 2020. Effect of nitrogen fertilization on production, chemical composition and morphogenesis of Guinea grass in the humid tropics. Agronomy 10: article 1840. https://doi.org/10.3390/agronomy10111840.
  • Durr PA, Rangel J. 2003. The response of Megathyrsus maximus to a simulated subcanopy environment. 2. Soil × shade × water interaction. Tropical Grasslands 37: 1–10.
  • Euclides VPB, Montagner DB, de Araújo AR, Pereira MdeA, Difante GdS, de Araújo IMM, Barbosa LF, Barbosa RA, Gurgel ALC. 2022. Biological and economic responses to increasing nitrogen rates in Mombaça guinea grass pastures. Scientific Reports 12: 1937. https://doi.org/10.1038/s41598-022-05796-6.
  • Ezzat S, Omer MA, Fadlalla B, Ahmed H. 2016. Effect of water harvesting and re-seeding on forage biomass production from rangelands in Sheikan Locality, North Kordofan State, Sudan. Journal of Agricultural and Crop Research 4: 117–123.
  • Falkenmark M, Jägerskog A, Schneider K. 2014. Overcoming the land–water disconnect in water-scarce regions: time for IWRM to go contemporary. International Journal of Water Resources Development 30: 391–408. https://doi.org/10.1080/07900627.2014.897157.
  • Ghimire SR, Johnston JM. 2019. Sustainability assessment of agricultural rainwater harvesting: evaluation of alternative crop types and irrigation practices. PLoS ONE 14: e0216452. https://doi.org/10.1371/journal.pone.0216452.
  • González Marcillo RL, Castro Guamàn WE, Guerrero Pincay AE, Vera Zambrano PA, Ortiz Naveda NR, Guamàn Rivera SA. 2021. Assessment of Guinea grass Megathyrsus maximus under silvopastoral systems in combination with two management systems in Orellana Province, Ecuador. Agriculture 11: 117. https://doi.org/10.3390/agriculture11020117.
  • Habermann E, San Martin JAB, Contin DR, Bossan VP, Barboza A, Braga MR, et al. 2019. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Megathyrsus maximus. PLoS ONE 14: e0212506. https://doi.org/10.1371/journal.pone.0212506.
  • Hare MD, Phengphet S, Songsiri T, Sutin N. 2015. Effect of nitrogen on yield and quality of Megathyrsus maximus cvv. Mombasa and Tanzania in Northeast Thailand. Tropical Grasslands-Forrajes Tropicales 3: 27–33. https://doi.org/10.17138/TGFT(3)27-33.
  • Hatfield JL, Dold C. 2019. Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science. 10: 103. https://doi.org/10.3389/fpls.2019.00103.
  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. 2011. The water footprint assessment manual: Setting the global standard, Earthscan, London, UK.
  • IPCC. 2019. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In: Shukla PR, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H-O, Roberts DC, et al. (Eds). In press. https://www.ipcc.ch/srccl/download/.
  • Izaurralde RC, Thomson AM, Morgan JA, Fay PA, Polley HW, Hatfield JL. 2011. Climate impacts on agriculture: implications for forage and rangeland production. Agronomy Journal 103: 371–381. https://doi.org/10.2134/agronj2010.0304.
  • Lai L, Kumar S, Osborne S, Owens VN. 2018. Switchgrass impact on selected soil parameters, including soil organic carbon, within six years of establishment. Catena 163: 288−296. https://doi.org/10.1016/j.catena.2017.12.030.
  • Lebel S, Fleskens L, Forster PM, Jackson LS, Lorenz S. 2015. Evaluation of in situ rainwater harvesting as an adaptation strategy to climate change for maize production in rainfed Africa. Water Resources Management 29: 4803–4816. https://doi.org/10.1007/s11269-015-1091-y.
  • Li Z, Zhang W, Aikebaier Y, Dong T, Huang G, Qu T, Zhang H. 2020. Sustainable development of arid rangelands and managing rainwater in gullies, central Asia. Water 12: 2533. https://doi.org/10.3390/w12092533.
  • Lutta AI, Wasonga OV, Nyangito MM, Sudan FK, Robinson LW. 2020. Adoption of water harvesting technologies among agro-pastoralists in semi-arid rangelands of south eastern Kenya. Environmental Systems Research 9: 36. https://doi.org/10.1186/s40068-020-00202-4.
  • Mendoza-Labrador J, Romero-Perdomo F, Hernández J-P, Uribe D, Buitrago RB. 2019. Enhancement of drought tolerance on guinea grass by dry alginate macrobeads as inoculant of Bacillus strains. bioRxiv 761056. https://doi.org/10.1101/761056.
  • Mganga KZ, Bosma L, Amollo KO, Kioko T, Kadenyi N, Ndathi AJN, Wambua SM, Kaindi EM, Musyoki GK, Musimba NKR, Van Steenbergen F. 2022. Combining rainwater harvesting and grass reseeding to revegetate denuded African semi-arid landscapes. Anthropocene Science 1: 80–90. https://doi.org/10.1007/s44177-021-00007-9.
  • Mohamed HI, Ahmed SM, Mohamed AD. 2021. Modeling selected ecological interactions of Megathyrsus maximus in a semi-dry environment enhanced with in situ rainwater harvesting systems. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-021-01282-6.
  • Morison JIL, Baker NR, Mullineaux PM, Davies WJ. 2008. Improving water use in crop production. Philosophical Transactions of the Royal Society B (Biological Sciences) 363: 639–658. https://doi.org/10.1098/rstb.2007.2175.
  • Mureva A, Ward D, Pillay T, Chivenge P, Cramer M. 2018. Soil organic carbon increases in semi-arid regions while it decreases in humid regions due to woody-plant encroachment of grasslands in South Africa. Scientific Reports 8: 15506. doi: 10.1038/s41598-018-33701-7
  • Nawaz N, Javed R, Hussain K, Nawaz K, Majeed A. 2014. Effect of climatic and soil conditions on Guinea grass (Megathyrsus maximus (Jacq.) B.K) at different locations of Punjab, Pakistan. World Journal of Agricultural Sciences 10: 231–242. https://www.idosi.org/wjas/wjas10(5)14/5.pdf.
  • Ouachinou JMS, Dassou GH, Azihou AF, Adomou AC, Yédomonhan H. 2018. Breeders’ knowledge on cattle fodder species preference in rangelands of Benin. Journal of Ethnobiology and Ethnomedicine 14: 66. https://doi.org/10.1186/s13002-018-0264-1.
  • Paciullo DSC, Gomide CAM, Castro CRT, Mauricio RM, Fernandes PB, Morenz MJF. 2017. Morphogenesis, biomass and nutritive value of Megathyrsus maximus under different shade levels and fertilizer nitrogen rates. Grass and Forage Science 72: 590–600. https://doi.org/10.1111/gfs.12264.
  • Pereira LS, Alves I. 2005. Crop water requirements. In: Hillel D (ed.), Encyclopedia of Soils in the Environment. Elsevier. pp 322–334. https://doi.org/10.1016/B0-12-348530-4/00255-1.
  • Pezzopane JRM, Santos PM, Evangelista SRM, Bosi C, Cavalcante ACR, Bettiol GM, De Miranda Gomide CA, Pellegrino GQ. 2017. Megathyrsus maximus cv. Tanzânia: climate trends and regional pasture production in Brazil. Grass and Forage Science 72: 104–117. https://doi.org/10.1111/gfs.12229.
  • Ram SN and Trivedi BK. 2012. Response of Guinea grass (Megathyrsus maximus Jacq) to nitrogen, farmyard manure and harvest intervals. Forage Research 38: 49–52.
  • Rocha JR, de Mello Prado R, de Cássia Piccolo M. 2022. New outcomes on how silicon enables the cultivation of Megathyrsus maximus in soil with water restriction. Scientific Reports 12: 1897. https://doi.org/10.1038/s41598-022-05927-z.
  • Rowlandson TL, Berg AA, Bullock PR, Ojo ER, McNairn H, Wiseman G, Cosh MH. 2013. Evaluation of several calibration procedures for a portable soil moisture sensor. Journal of Hydrology 498: 335–344. https://doi.org/10.1016/j.jhydrol.2013.05.021.
  • Santos PM, Thornton B, Corsi M. 2012. Adaptation of the C4 grass Megathyrsus maximus to defoliation is related to plasticity of N uptake, mobilisation and allocation patterns. Scientia Agricola 69: 293–299. https://doi.org/10.1590/S0103-90162012000500002.
  • Shamseddin MA, Mohamed MY, Hilmi HS, Eshag HM. 2014. Assessing water erosion hazards using the universal soil loss equation: a case study of central Sudan. International Journal of Soil and Crop Sciences 2: 77–85.
  • Shashikanth VS, Shekara BG, Somashekhar KS, Krishnappa MR. 2013. Performance of Guinea grass varieties in southern dry zone of Karnataka. Forage Research 39: 147–149.
  • SPSS Inc. 2006. SPSS Statistics for Windows, version 15.0, Chicago, United States.
  • Sudan’s country report. 2015. Sudan’s country report contributing to the state of the world’s biodiversity for food and agriculture. Federal Ministry of Agriculture and Forestry. Khartoum, Sudan.
  • Tolossa TT, Abebe FB, Girma AA. 2020. Review: rainwater harvesting technology practices and implication of climate change characteristics in Eastern Ethiopia. Cogent Food & Agriculture 6: 1724354. https://doi.org/10.1080/23311932.2020.1724354.
  • Vadez V, Kholova J, Medina S, Kakkera A, Anderberg H. 2014. Transpiration efficiency: new insights into an old story. Journal of Experimental Botany 65: 6141–6153. https://doi.org/10.1093/jxb/eru040.
  • Velasco-Muñoz JF, Aznar-Sánchez JA, Batlles-delaFuente A, Fidelibus MD. 2019. Rainwater harvesting for agricultural irrigation: an analysis of global research. Water 11: 1320. https://doi.org/10.3390/w11071320.
  • Wang X, Singh D, Marla S, Morris G, Poland J. 2018. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 14: 53. https://doi.org/10.1186/s13007-018-0324-5.
  • Ward D, Kirkman K, Tsvuura Z. 2017. An African grassland responds similarly to long-term fertilization to the Park Grass experiment. PLoS ONE 12: e0177208. https://doi.org/10.1371/journal.pone.0177208.
  • Wright SJ, Turner BL, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, et al. 2018. Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology 99: 1129–1138. https://doi.org/10.1002/ecy.2193.
  • Xu F, Chu C, Xu Z. 2020. Effects of different fertilizer formulas on the growth of loquat rootstocks and stem lignification. Scientific Reports 10: 1033. https://doi.org/10.1038/s41598-019-57270-5.
  • Yang R, Liu L, Liu Q, Li X, Yin L, Hao X, et al. 2022. Validation of leaf area index measurement system based on wireless sensor network. Scientific Reports 12: 4668. https://doi.org/10.1038/s41598-022-08373-z.
  • Yerou H, Belguerbi B, Homrani A, Benabdeli K. 2021. Water footprint of milk production systems in semi-arid plains of north Africa. Biotechnology in Animal Husbandry 37: 27–43. https://doi.org/10.2298/BAH2101027Y.
  • Zaroug G. 2006. Country Pasture/Forage Resource Profiles. Federal Ministry of Agriculture. Khartoum, Sudan.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.