51
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Some questions on partially ordered rings – a survey

Pages 2611-2624 | Received 29 Sep 2022, Published online: 06 Mar 2023

References

  • G. Birkhoff, Lattice Theory, AMS Colloquium Publications, Vol. 25, Third Edition, 1967.
  • G. Birkhoff and R. Pierce, Lattice-ordered rings, An. Acad. Brasil Ci. 28 (1956), 41–69.
  • W. Bradly and J. Ma, Lattice-ordered 2 × 2 triangular matrix algebras, Linear Algebra Appl. 404 (2005), 262–274. doi: 10.1016/j.laa.2005.02.020
  • P. Conrad and J. Dauns, An embedding theorem for lattice-ordered fields, Pacific J. Math. 30 (1969), 385–398. doi: 10.2140/pjm.1969.30.385
  • P. Conrad and P. McCarthy, The structure of f -algebras, Math. Nachr. 58 (1973), 169–191. doi: 10.1002/mana.19730580111
  • C. de la Mora and P. Wojciechowski, Multiplicative bases in matrix algebras, Linear Algebra Appl. 419 (2006), 287–298. doi: 10.1016/j.laa.2006.04.014
  • J. Deam, A radical for lattice-ordered rings, Pacific J. Math. 25 (1968), 71–82. doi: 10.2140/pjm.1968.25.71
  • R. DeMarr and A. Steger, On elements with negative squares, Proc. Amer. Math. Soc. 31 (1972), 57–60. doi: 10.1090/S0002-9939-1972-0289390-3
  • D. Dubois, On partly ordered fields, Proc. Amer. Math. Soc. 7 (1956), 918–930. doi: 10.1090/S0002-9939-1956-0090582-8
  • K. Evans and J. Ma, Galois extension and O* -fields, (preprint).
  • M. Findler and J. Ma, Extending partial orders on rings, Quaest. Math. 44 (2021), 869–879
  • L. Fuchs, Partially ordered algebraic systems, Dover Publications, Inc., Mineola, New York, 2011.
  • L. Gillman and C. Kohls, Convex and pseudoprime ideals in rings of continuous functions, Math. Z. 72 (1960), 399–409. doi: 10.1007/BF01162963
  • D. Harrison, Finite and infinite primes for rings and fields, Mem. Amer. Math. Soc., Vol. 68, AMS, Providence, RI, 1966.
  • M. Henriksen, On difficulties in embedding lattice-ordered integral domains in lattice-ordered fields, General topology and its relations to modern analysis and algebra, III, (Proc. Third Prague Topological Sympos., 1971), pp. 183–185, Academia, Prague, 1972.
  • M. Henriksen, Semiprime ideals of f -rings, Sympos. Math. 21 (1997), 401–409.
  • M. Henriksen, A survey of f -rings and some of their generalizations, Ordered algebraic structures (Curaçao, 1995), pp. 1–26, Kluwer Acad. Publ., Dordrecht, 1997.
  • M. Henriksen, Old and new unsolved problems in lattice-ordered rings that need not be f-rings, Ordered algebraic structures, pp. 11–17, Dev. Math., Vol. 7, Kluwer Acad. Publ., Dordrecht, 2002.
  • M. Henriksen and J. Isbell, Lattice-ordered rings and function rings, Pacific J. Math. 12 (1962), 533–565. doi: 10.2140/pjm.1962.12.533
  • C. Huijsmans and B. de Pagter, Ideal theory in f -algebras, Trans. Amer. Math. Soc. 269 (1982), 225–245.
  • D. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163–215. doi: 10.1007/BF02546389
  • I. Kaplansky, Lattices of continuous functions, Bull. AMS 53 (1947), 617–623. doi: 10.1090/S0002-9904-1947-08856-X
  • F. Li, X. Bai, and D. Qiu, Lattice-ordered matrix algebras over real gcd-domains, Comm. Algebra 41 (2013), 2109–2113. doi: 10.1080/00927872.2011.654299
  • J. Ma, On lattice-ordered rings with polynomial constraints, J. Math. Res. Exposition 11 (1991), 325–331. (Chinese)
  • J. Ma, The unitability of ℓ-prime lattice-ordered rings with squares positive, Proc. Amer. Math. Soc. 121 (1994), 991–997. doi: 10.1090/S0002-9939-1994-1186988-X
  • J. Ma, Lattice-ordered matrix algebras with the usual lattice order, J. Algebra 228 (2000), 406–416. doi: 10.1006/jabr.1999.8232
  • J. Ma, The quotient rings of a class of lattice-ordered Ore domains, Algebra Universalis 44 (2000), 299–304. doi: 10.1007/s000120050188
  • J. Ma, Recognition of lattice-ordered matrix rings, Order 30 (2013), 617–623. doi: 10.1007/s11083-012-9265-1
  • J. Ma, Lecture notes on algebraic structure of lattice-ordered rings, World Scientific Publishing, Singapore, 2014.
  • J. Ma, Matrix ℓ-algebras over ℓ-fields, Cogent Math. 2 (2015), Art. ID 1053660. doi: 10.1080/23311835.2015.1053660
  • J. Ma, Partial orders on C = D + Di and H = D + Di + Dj + Dk, International Journal of Advanced Mathematical Sciences 3 (2015), 156–160. doi: 10.14419/ijams.v3i2.4773
  • J. Ma, Directed partial orders on complex and quaternions II, Positivity 20 (2016), 823–828. doi: 10.1007/s11117-015-0388-7
  • J. Ma, Division closed lattice-ordered rings, Order 34 (2017), 363–368. doi: 10.1007/s11083-016-9406-z
  • J. Ma, Commutative consistently L* -rings, Algebra Universalis 80 (2019), Article number 31. doi: 10.1007/s00012-019-0604-6
  • J. Ma, Regular division closed lattice-ordered rings, Quaest. Math. 42 (2019), 1353–1355. doi: 10.2989/16073606.2018.1520750
  • J. Ma, The number fields that are O* -fields, Algebra Universalis, published online first: 6/27/22.
  • J. Ma, Partially ordered fields and integral domains, (preprint).
  • J. Ma and E. March, Lattice-ordered triangular matrix algebras, J. Algebra 321 (2009), 3659–3667. doi: 10.1016/j.jalgebra.2009.02.028
  • J. Ma and A. Martinez, The number fields that are O* -fields II, Quaest. Math., published online: 10/7/2022.
  • J. Ma and W. McGovern, Division closed partially ordered rings, Algebra Universalis 78 (2017), 515–532. doi: 10.1007/s00012-017-0467-7
  • J. Ma and R. Redfield, Fields of quotients of lattice-ordered domains, Algebra Universalis 52 (2005), 383–401. doi: 10.1007/s00012-004-1875-z
  • J. Ma and R. Redfield, Lattice-ordered matrix rings over the integers, Comm. Algebra 35 (2007), 2160–2170. doi: 10.1080/00927870701302172
  • J. Ma and R. Redfield, Extending orders on rings with idempotents and d-elements, Order 39 (2002), 309–322. doi: 10.1007/s11083-021-09575-2
  • J. Ma and B. Rygaard, Division closed ℓ-rings and power positive L* -rings, Quaest. Math. 44 (2021), 1045–1053. doi: 10.2989/16073606.2020.1766595
  • J. Ma and J. Smith, Division closed lattice-ordered rings and commutative L* -rings, Quaest. Math. 42 (2019), 1019–1029. doi: 10.2989/16073606.2018.1503201
  • J. Ma and P. Wojciechowski, F* -rings are O*. Order 17 (2000), 125–128. doi: 10.1023/A:1006427508206
  • J. Ma and P. Wojciechowski, A proof of Weiberger’s conjecture, Proc. Amer. Math. Soc. 130 (2002), 2845–2851. doi: 10.1090/S0002-9939-02-06408-0
  • J. Ma and P. Wojciechowski, Lattice orders on matrix algebras, Algebra Universalis 47 (2002), 435–441. doi: 10.1007/s00012-002-8198-8
  • J. Ma and P. Wojciechowski, Structure spaces of maximal ℓ-ideals of lattice-ordered rings, Ordered Algebraic Structures (University of Florida, 2/28/2001-3/3/2001), Developments in Mathematics, Vol. 7, pp. 261–274, (2002).
  • J. Ma, L. Wu, and Y. Zhang, Directed partial orders on complex numbers and quaternions over non-Archimedean linearly ordered fields, Order 34 (2017), 37–44. doi: 10.1007/s11083-016-9387-y
  • J. Ma, L. Wu, and Y. Zhang, Directed partial orders on F (i) with 1 > 0, Order 35 (2018), 461–466. doi: 10.1007/s11083-017-9442-3
  • J. Ma, L. Wu, and Y. Zhang, Directed partial orders on the field of generalized complex number with 1 > 0, Positivity 23 (2019), 1001–1007. doi: 10.1007/s11117-019-00647-7
  • J. Ma and Y. Yang, Commutative L* -rings II, Quaest. Math 41 (2018), 719–727. doi: 10.2989/16073606.2017.1398195
  • J. Ma and Y. Zhang, Lattice-ordered matrix algebras containing positive cycles, Positivity 17 (2013), 299–307. doi: 10.1007/s11117-012-0167-7
  • J. Ma and Y. Zhang, Lattice-ordered matrix rings over totally ordered rings, Order 31 (2014), 45–54. doi: 10.1007/s11083-013-9287-3
  • J. Ma and Y. Zhang, Commutative L* -rings, J. Math. Res. Appl. 37 (2017), 267–273.
  • R. McHaffey, A proof that the quaternions do not form a lattice-ordered algebra, Proc. Iraqi Sci. Soc. 5 (1962), 70–71.
  • P. Morandi, Field and Galois Theory, Springer, New York, 1996.
  • S. Larson, Pseudoprime ℓ-ideals in a class of f -rings, Proc. Amer. Math. Soc. 104 (1988), 685–692.
  • S. Larson, Quasi-normal f-rings, Ordered algebraic structures (Curaçao, 1995), pp. 261–275, Kluwer Acad. Publ., Dordrecht, 1997.
  • W. Rump and Y. Yang, Non-archimedean directed fields K(i) with o-subfield K and i2 = −1, J. Algebra 400 (2014), 1–7. doi: 10.1016/j.jalgebra.2013.11.012
  • N. Schwartz, Lattice-ordered fields, Order 3 (1986), 179–194. doi: 10.1007/BF00390108
  • N. Schwartz and Y. Yang, Fields with directed partial orders, J. Algebra 336 (2011), 342–348. doi: 10.1016/j.jalgebra.2011.04.016
  • S. Steinberg, Examples of lattice-ordered rings, J. Algebra 72 (1981), 223–236. doi: 10.1016/0021-8693(81)90319-7
  • S. Steinberg, On lattice-ordered algebras that satisfy polynomial identities, Ordered algebraic structures, (Cincinnati, Ohio, 1982), pp. 179–187, Lecture Notes in Pure and Appl. Math., Vol. 99, Dekker, New York, 1985. 16A86 (06F25).
  • S. Steinberg, Unital ℓ-prime lattice-ordered rings with polynomial constraints are domains, Trans. Amer. Math. Soc. 276 (1983), 145–164.
  • S. Steinberg, Archimedean, semiperfect and π-regular lattice-ordered algebras with polynomial constraints are f -algebras, Proc. Amer. Math. Soc. 89 (1983), 205–210.
  • S. Steinberg, On the unitability of a class of partially ordered rings that have squares positive, J. Algebra 100 (1986), 325–343. doi: 10.1016/0021-8693(86)90080-3
  • S. Steinberg, A characterization of rings in which each partial order is contained in a total order, Proc. Amer. Math. Soc. 125 (1997), 2555–2558. doi: 10.1090/S0002-9939-97-03933-6
  • S. Steinberg, On the scarcity of lattice-ordered matrix algebras II, Proc. Amer. Math. Soc. 128 (2000), 1605–1612. doi: 10.1090/S0002-9939-99-05171-0
  • S. Steinberg, f -algebras wht are embeddable in unital f -algebras, Comm. Algebra 30 (2002), 3991–4006. doi: 10.1081/AGB-120005831
  • S. Steinberg, Lattice-ordered rings and modules, Springer, New York, 2010. doi: 10.1007/978-1-4419-1721-8
  • H. Subramanian, ℓ-prime ideals in f -rings, Bull. Soc. Math. France 95 (1967), 193–203 doi: 10.24033/bsmf.1652
  • H. Subramanian, Kaplansky’s Theorem for f -rings, Math. Ann. 179 (1968), 70–73. doi: 10.1007/BF01350211
  • E. Weinberg, On the scarcity of lattice-ordered matrix rings, Pacific J. Math. 19 (1966), 561–571. doi: 10.2140/pjm.1966.19.561
  • P. Wojciechowski, Lattice-ordered algebras with polynomial inequalities, Forum Math. 7 (1995), 317–330. doi: 10.1515/form.1995.7.317
  • P. Wojciechowski, Directed maximal partial orders of matrices, Linear Algebra Appl. 375 (2003), 45–49. doi: 10.1016/S0024-3795(03)00554-8
  • P. Wojciechowski and V. Kreinovich, On lattice extensions of partial orders of rings, Comm. Algebra 25 (1997), 935–941. doi: 10.1080/00927879708825898
  • Z. Xu and Y. Zhang, Directed partial orders over non-archimedean o-fields, Positivity 24 (2020), 1279–1291. doi: 10.1007/s11117-019-00732-x
  • Y. Yang, On the existence of directed rings and algebras with negative squares, J. Algebra 295 (2006), 452–457. doi: 10.1016/j.jalgebra.2005.10.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.