48
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Development of new assessment approach: a macroinvertebrates-based biotic scoring system to assess the health of riverine ecosystems in the Sahel area in Burkina Faso (West Africa)

, , , , , , & show all
Pages 40-51 | Received 29 Nov 2022, Accepted 03 Dec 2023, Published online: 08 Feb 2024

References

  • Agblonon Houelome TM, Agbohessi TP, Adandedjan D, Nechifor R, Chikou A, Lazar IM, Laleye P. 2022. Ecological quality of the Alibori River, northern Benin, using macroinvertebrate indicators. African Journal of Aquatic Science 47: 173–184. https://doi.org/10.2989/16085914.2022.2044749.
  • Akamagwuna FC, Odume ON, Richoux NB. 2023. Agricultural disturbance affects taxonomic and functional diversity of Afrotropical macroinvertebrate composition in a South African river system. Environmental and Sustainability Indicators 18: 100251. https://doi.org/10.1016/j.indic.2023.100251.
  • Armitage PD, Moss D, Wright J F, Furse MT. 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Research 17: 333–347. https://doi.org/10.1016/0043-1354(83)90188-4.
  • Aschalew L, Moog O. 2015. Benthic macroinvertebrates based new biotic score “ETHbios” for assessing highland streams and rivers in Ethiopia. Limnologica 52: 11–19. https://doi.org/10.1016/j.limno.2015.02.002.
  • Beck WM. 1954. Studies in stream pollution biology: I. A simplified ecological classification of organisms. Quarterly Journal of the Florida Academy of Sciences 17: 211–227.
  • Birk S, Bonne W, Borja A, Brucet S, Courrat A, Poikane S, et al. 2012. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecological Indicator 18: 31–41. https://doi.org/10.1016/j.ecolind.2011.10.009.
  • Blanco S, Bécares E. 2010. Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 79: 18–25. https://doi.org/10.1016/j.chemosphere.2010.01.059.
  • Bohus A, Gál B, Barta B, Szivák I, Karádi-Kovács K, Boda P, Padisák J, Schmera, D. 2023. Effects of urbanization-induced local alterations on the diversity and assemblage structure of macroinvertebrates in low-order streams. Hydrobiologia 850: 881–899. https://doi.org/10.1007/s10750-022-05130-1.
  • Bonada N, Dallas H, Rieradevall M, Prat N, Day J. 2006. A comparison of rapid bioassessment protocols used in 2 regions with Mediterranean climates, the Iberian Peninsula and South Africa. Journal of the North American Benthological Society 25: 487–500. https://doi.org/10.1899/0887-3593(2006)25[487:ACORBP]2.0.CO;2.
  • Callisto M, Massara RL, Linares MS, Hughes RM. 2022. Benthic macroinvertebrate assemblages detect the consequences of a sewage spill: a case study of a South American environmental challenge. Limnology 23: 181–194. https://doi.org/10.1007/s10201-021-00680-0.
  • Camara M, Jamil NR, Abdullah, AFB. 2019. Impact of land uses on water quality in Malaysia: a review. Ecological Processes 8: 10. https://doi.org/10.1186/s13717-019-0164-x.
  • Castillejo P, Ortiz S, Jijón G, Lobo EA, Heinrich C, Ballesteros I, Rios-Touma B. 2023. Response of macroinvertebrate and epilithic diatom communities to pollution gradients in Ecuadorian Andean rivers. Hydrobiologia 851: 431–446. doi: 10.1007/s10750-023-05276-6
  • Cheri CR, Finn D S. 2023. Odonata as indicators? Dragonflies and damselflies respond to riparian conditions along Ozark Spring streams. Hydrobiology 2: 260–276. https://doi.org/10.3390/hydrobiology2010017.
  • Chutter FM. 1972. An empirical biotic index of the quality of water in South African streams and rivers. Water Research 6: 19–30. https://doi.org/10.1016/0043-1354(72)90170-4.
  • Chutter FM. 1994. The rapid biological assessment of streams and river water quality by means of macroinvertebrate communities in South Africa. Classification of rivers and environmental health indicators. WRC Report No. TT, 63: 217–234. Pretoria: Water Research Commission.
  • Chutter FM. 1995. The role of aquatic organisms in for sustainable utilisation. Water Science and Technology 32: 283–291. https://doi.org/10.2166/wst.1995.0627.
  • Chutter FM. 1998. Research on the rapid biological assessment of water quality impacts in streams and rivers. WRC Report No. 422/1/98. Pretoria: Water Research Commission.
  • Cohn F. 1853. Überlebendige Organismenim Trinkwasser. Z. klin. Medizine 4: 229–237.
  • Dallas HF. 1997. A preliminary evaluation of aspects of SASS (South African Scoring System) for the rapid bioassessment of water quality in rivers, with particular reference to the incorporation of SASS in a national biomonitoring programme. Southern African Journal of Aquatic Sciences 23: 79–94. doi: 10.1080/10183469.1997.9631389
  • Dallas HF. 2007. River Health Programme: South African Scoring System (SASS) data interpretation guidelines. The Freshwater Consulting Group / Freshwater Research Unit University of Cape Town: 85.
  • Dallas HF. 2009. Wetland monitoring using aquatic macro-invertebrates. Technical Report. Report 5/2009, Prepared for the Biokavango Project, Harry Oppenheimer Okavango Research Centre, University of Botswana. The Freshwater Consulting Group, University of Cape Town, Cape Town, South Africa.
  • Dallas HF. 2021. Rapid bioassessment protocols using aquatic macroinvertebrates in Africa –considerations for regional adaptation of existing biotic indices. Frontiers in Water 3: 628227. https://doi.org/10.3389/frwa.2021.628227.
  • Dallas H, Kennedy M, Taylor J, Lowe S, Murphy K. 2010. Review of existing biomonitoring methodologies and appropriateness for adaptation to river quality assessment protocols for use in southern tropical Africa. SAFRASS Deliverable Report to the African, Caribbean and Pacific Group of States (ACP Group) Science and Technology Programme, Contract No. AFS/2009/219013. University of Cape Town, Cape Town: 36.
  • Dallas HF, Lowe S, Kennedy MP, Saili K, Murphy KJ. 2018. Zambian Invertebrate Scoring System (ZISS): a macroinvertebrate-based biotic index for rapid bioassessment of southern tropical African river systems. African Journal of Aquatic Science 43: 325–344. https://doi.org/10.2989/16085914.2018.1517081.
  • Díaz-Álvarez EA, Manrique C, Boege K, Del-Val E. 2023. Changes in Coleopteran assemblages over a successional chronosequence in a Mexican tropical dry forest. PeerJ 11: e15712. https://doi.org/10.7717/peerj.15712.
  • Dickens CWS, Graham PM. 2002. The South African Scoring System (SASS) version 5 rapid bioassessment method for rivers. African Journal of Aquatic Science 27: 1–10. https://doi.org/10.2989/16085914.2002.9626569.
  • Ding J, Jiang Y, Fu L, Liu Q, Peng Q, Kang M. 2015. Impacts of land use on surface water quality in a subtropical river basin: a case study of the Dongjiang River Basin, Southeastern China. Water 7: 4427–4445. https://doi.org/10.3390/w7084427.
  • Durand JR, Levêque C. 1981. Flore et faune aquatiques de l’Afrique Sahélo-Soudanienne, Tome 1 et Tome II. France: ORSTOM. I. R. D. nO\o. 44.
  • Edegbene AO, Akamagwuna FC, Odume ON, Arimoro FO, Ovie TTE, Akumabor EC, et al. 2022. A macroinvertebratebased multimetric index for assessing ecological condition of forested stream sites draining nigerian urbanizing landscapes. Sustainability 14: 11289 https://doi.org/10.3390/su141811289.
  • Edegbene AO, Elakhame LA, Arimoro FO, Osimen EC, Odume ON. 2019. Development of macroinvertebrates multimetric index for ecological evaluation of a river in North Central Nigeria. Environmental Monitoring and Assessment 191: 274. https://doi.org/10.1007/s10661-019-7438-8.
  • Feio MJ, Hughes RM, Serra SR, Nichols SJ, Kefford BJ, Lintermans M, et al. 2022. Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Global Change Biology 29: 355–374. doi: 10.1111/gcb.16439
  • García-Girón J, Tolonen KT, Soininen J, Snåre H, Pajunen V, Heino J. 2022. Anthropogenic land‒use impacts on the size structure of macroinvertebrate assemblages are jointly modulated by local conditions and spatial processes. Environmental Research 204: 112055. https://doi.org/10.1016/j.envres.2021.112055.
  • Hassal AA. 1850. A microscopic examination of the water supplied to the inhabitants of London and suburban districts. London.
  • Hering D, Buffagni A, Moog O, Sandin L, Sommerhaeuser M, Stubauer I, Feld C, Johnson R, Pinto P, Skoulikidis N, Verdonschot P, Zahràdkovà S. 2003. The development of a system to assess the ecological quality of streams based on macroinvertebrates-design of the sampling programme within the AQEM project. International Revue of Hydrobiology 88: 345–361. https://doi.org/10.1002/iroh.200390030.
  • Hering D, Feld CK, Moog O, Ofenböck T. 2006. Cook book for the development of a multi-metric index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324. https://doi.org/10.1007/s10750-006-0087-2.
  • Hilsenhoff WL. 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7: 65–68. https://doi.org/10.2307/1467832.
  • Holt CR, Pfitzer D, Scalley C, Caldwell BA, Batzer DP. 2015. Macroinvertebrate community responses to annual flow variation from river regulation: an 11-year study. River Research and Applications 31: 798–807. https://doi.org/10.1002/rra.2782.
  • Kaaya L, Day J, Dallas H. 2015. Tanzania River Scoring System (TARISS): a macroinvertebrate-based biotic index for rapid bioassessment of rivers. African Journal of Aquatic Science 40: 109–117. https://doi.org/10.2989/16085914.2015.1051941.
  • Kaboré I, Moog O, Alp M, Guenda W, Koblinger T, Mano K, et al. 2016. Using macroinvertebrates for ecosystem health assessment in semi-arid streams of Burkina Faso. Hydrobiologia 766: 57–74. https://doi.org/10.1007/s10750-015-2443-6.
  • Kaboré I, Moog O, Ouéda A, Sendzimir J, Ouedraogo R, Guenda W, Melcher AH. 2018. Developing reference criteria for the ecological status of West African rivers. Environmental Monitoring and Assessment 190: 2. https://doi.org/10.1007/s10661-017-6360-1.
  • Kaboré I, Ouéda A, Moog O, Meulenbroek P, Tampo L, Bancé V, Melcher AH. 2022. A benthic invertebrates-based biotic index to assess the ecological status of West African Sahel Rivers, Burkina Faso. Journal of Environmental Management 307: 114503. https://doi.org/10.1016/j.jenvman.2022.114503.
  • Kaufmann PR, Hughes RM, Paulsen SG, Peck DV, Seeliger CW, Kincaid T, Mitchell RM. 2022. Physical habitat in conterminous US streams and rivers, part 2: a quantitative assessment of habitat condition. Ecological Indicators 141: 109047. https://doi.org/10.1016/j.ecolind.2022.109047.
  • Khelifa R, Deacon C, Mahdjoub H, Suhling F, Simaika J P, Samways MJ. 2021. Dragonfly Conservation in the Increasingly Stressed African Mediterranean Type Ecosystems. Frontier in Environmental Science 9: 660163. https://doi.org/10.3389/fenvs.2021.660163.
  • Kietzka GJ, Pryke J, Samways MJ. 2018. Comparative effects of urban and agricultural land transformation on Odonata assemblages in a biodiversity hotspot. Basic and Applied Ecology 33: 89–98. https://doi.org/10.1016/j.baae.2018.08.008.
  • Koblinger T, Trauner D. 2013. Benthic invertebrate assemblages in water bodies of Burkina Faso. Masters thesis, University of Natural Resources and Life Sciences, Vienna.
  • Kolenati FA. 1848. Über Nutzen und Schaden der Trichopteren. Stettinerentomology Ztg. 9.
  • Lowe S, Dallas H, Kennedy M, Taylor JC, Gibbins C, Lang P, et al. 2013a. The SAFRASS biomonitoring scheme: general aspects, macrophytes (ZMTR) and benthic macro-invertebrates (ZISS) protocols. Produced for the ACP Science and Technology Programme: 20.
  • Lowe S, Dallas H, Kennedy MP, Taylor JC, Gibbins C, Lang P, et al. 2013b. SAFRASS Methodology Manual. SAFRASS deliverable report to the African, Caribbean and Pacific Group of States (ACP Group) Science and Technology Programme, Contract No. AFS/2009/219013. University of Glasgow, Glasgow, Scotland: 36.
  • Mantel SK, Hughes DA, Muller WJ. 2010. Ecological impacts of small dams on South African rivers: Part I. Drivers of change—water quantity and quality. Water South Africa 36: 351–360.
  • Martins RT, Brito J, Dias-Silva K, Leal CG, Leitao RP, Oliveira VC, et al. 2021. Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecological Indicators 127: 107773. https://doi.org/10.1016/j.ecolind.2021.107773.
  • Marzin A, Verdonschot PFM, Pont D. 2013. The relative influence of catchment, riparian corridor and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia 704: 375–388. https://doi.org/10.1007/s10750-012-1254-2.
  • Masese FO, Achieng AO, O’Brien GC, McClain ME. 2020. Macroinvertebrate taxa display increased fidelity to preferred biotopes among disturbed sites in a hydrologically variable tropical river. Hydrobiologia 848: 321–343. https://doi.org/10.1007/s10750-020-04437-1.
  • Merritt RW, Cummins KW. 1984. An introduction to the aquatic insects of north America, second edition. Kendall/Hunt Publishing Company, Dubuque, IA.
  • Metcalfe JL. 1989. Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Environmental Pollution 60: 101–139. https://doi.org/10.1016/0269-7491(89)90223-6.
  • Moog O, Schmutz S, Schwarzinger I. 2018. Biomonitoring and bioassessment. Riverine Ecosystem Management 8: 371–390. https://doi.org/10.1007/978-3-319-73250-3_19.
  • Mtetwe S, Chipfunde L, Makwanise R. 2002. Establishment of biomonitoring reference sites for Zimbabwe—a tool for effective integrated catchment management. Proceedings of the 3rd WARFSA/WaterNet Symposium: Integrating Water Supply and Water Demand Management for Sustainable Use of Water Resources, Dar es Salaam, Tanzania.
  • Mthimkhulu S, Dallas H, Day J, Hoko Z. 2004. Biological assessment of the state of the water quality in the Mbuluzi River, Swaziland. Proceedings of the IWA Specialist Group Conference on Water and Wastewater Management for Developing Countries, 28–30 July 2004, Victoria Falls, Zimbabwe. London: IWA Publishing
  • Musonge PLS, Boets P, Lock K, Ambarita MND, Forio MAE, Goethals PL. 2020. Rwenzori Score (RS): a benthic macroinvertebrate index for biomonitoring rivers and streams in the Rwenzori Region, Uganda. Sustainability 12: 10473. https://doi.org/10.3390/su122410473.
  • Obubu JP. 2010. Identifying applicable bio-assessment and monitoring methods for sustainable management of ugandan river quality using macro-benthic invertebrates as indicators. Masters thesis, UNESCO – IPGL, Delft, Netherlands.
  • Ofenböck T, Moog O, Sharma S, Korte T. 2010. Development of the HKHbios: a new biotic score to assess the river quality in the Hindu Kush-Himalaya. Hydrobiologia 651: 39–58. https://doi.org/10.1007/s10750-010-0289-5.
  • Ollis DJ, Dallas HF, Esler KJ, Boucher C. 2006. Bioassessment of the ecological integrity of river ecosystems using aquatic macroinvertebrates: an overview with a focus on South Africa. African Journal of Aquatic Science 31: 205–227. https://doi.org/10.2989/16085910609503892.
  • Palmer RW, Taylor ED. 2004. The Namibian Scoring System (NASS) version 2 rapid bio-assessment method for rivers. African Journal of Aquatic Science 29: 229–234. https://doi.org/10.2989/16085910409503814.
  • Pantle K, Buck H. 1955. Die biologischeÜberwachung der Gewässer und die Darstellung der Ergebnisse. Gas- und Wasserfach. Wasser und Abwasser 96: 609–620.
  • Phiri C. 2000. An assessment of the health of two rivers within Harare, Zimbabwe, on the basis of macroinvertebrate community structure and selected physicochemical variables. African Journal of Aquatic Science 25: 134–145 https://doi.org/10.2989/160859100780177677.
  • Rodier J, Legube B, Merlet N. 2009. L’Analyse de l’eau, 9ème édition entièrement mise à jour. Dunod Paris.
  • Sabha I, Hamid A, Bhat SU, Islam ST. 2022. Water quality and anthropogenic impact assessment using macroinvertebrates as bioindicators in a stream ecosystem. Water, Air, & Soil Pollution 233: 1–15. https://doi.org/10.1007/s11270-022-05839-8.
  • Seidu I, Danquah E, Ayine Nsor C, Amaning Kwarteng D, Lancaster LT. 2017. Odonata community structure and patterns of land use in the Atewa Range Forest Reserve, Eastern Region (Ghana). International Journal of Odonatology 20: 173–189. https://doi.org/10.1080/13887890.2017.1369179.
  • Sharma S, Moog O. 1998. The application of biotic indices and scores in water quality assessment of Nepalese rivers. In: Chalise SR, Herrmann A, Khanal NR, Lang H, Molnar L, Pokhrel AP (eds), Ecohydrology of High Mountain Areas. Kathmandu: International Centre for Integrated Mountain Development (ICIMOD). pp 641–657.
  • Šigutová H, Šipoš J, Dolný A. 2019. A novel approach involving the use of Odonata as indicators of tropical forest degradation: when family matters. Ecological Indicators 104: 229–236. https://doi.org/10.1016/j.ecolind.2019.05.001.
  • Sitati A, Raburu PO, Yegon MJ, Masese FO. 2021. Land-use influence on the functional organisation of Afrotropical macroinvertebrate assemblages. Limnologica 88: 125875. https://doi.org/10.1016/j.limno.2021.125875.
  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P. 2010. Invertébrés d’eau douce, Nouvelle édition. Centre National de la Recherche Scientifique Press, Paris, France.
  • Tampo L, Kabore I, Alhassan EH, Oueda A, Bawa LM, Djaneye-Boundjou G. 2021. Benthic macroinvertebrates as ecological indicators: their sensitivity to the water quality and human disturbances in a tropical river. Frontier in Water 3: 662765. https://doi.org/10.3389/frwa.2021.662765.
  • Tampo L, Lazar IM, Kaboré I, Ouéda A, Akpataku KV, Djaneye-Boundjoua G, et al. 2020. Wendengoudi Guenda. A multi-metric index for assessment of aquatic ecosystem health based on macroinvertebrates for the Zio River basin in Togo. Limnologica 83: 125783. https://doi.org/10.1016/j.limno.2020.125783.
  • Twesigye CK, Onywere SM, Getenga ZM, Mwakalila SS, Nakiranda JK. 2011. The impact of land use activities on vegetation cover and water quality in the Lake Victoria watershed. The Open Environmental Engineering Journal 4: 66–77. https://doi.org/10.2174/1874829501104010066.
  • Uys MC, Goetsch PA, O’Keeffe JH. 1996. National Biomonitoring Programme for Riverine Ecosystems: ecological indicators, a review and recommendations. NBP Report Series No. 4. Institute for Water Quality Studies, Department of Water Affairs and Forestry, Pretoria.
  • Vos P, Wepener V, Cyrus, DP. 2002. Efficiency of the SASS4 rapid bioassessment protocol in determining river health: a case study on the Mhlathuze River, KwaZulu-Natal, South Africa. Water South Africa 28: 13–22 https://doi.org/10.4314/wsa.v28i1.4862.
  • Weerts SP, Cyrus DP. 2008. Inter-basin water transfer effects on the invertebrates of the Mvuzane River: a test of the SASS rapid biomonitoring protocol to assess the impact of flow modification. Water South Africa 34: 175–182. https://doi.org/10.4314/wsa.v34i2.183637.
  • Williams-Subiza EA, Brand C, Miserendino ML. 2022. Compositional shifts in freshwater macroinvertebrate communities over 30 years of urbanization. Ecological Engineering 183: 106738. https://doi.org/10.1016/j.ecoleng.2022.106738.
  • Woodiwiss FS. 1964. The biological system of stream classification used by the Trent River Board. Chemistry and Industry 83: 443–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.