211
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Potential impact of marine heatwaves on selected phytoplankton adapted to the Gulf of Guinea during stable hydrographic periods

ORCID Icon, ORCID Icon & ORCID Icon
Pages 77-86 | Received 01 Aug 2020, Accepted 13 Nov 2020, Published online: 01 Mar 2021

References

  • Anang ER. 1979. The seasonal cycle of the phytoplankton in the coastal waters of Ghana. Hydrobiologia 62: 33–45. doi: 10.1007/BF00012560
  • Anning T, Harris G, Geider RJ. 2001. Thermal acclimation in the marine diatom Chaetoceros calcitrans (Bacillariophyceae). European Journal of Phycology 36: 233–241. doi: 10.1080/09670260110001735388
  • Asuquo FE, Oghenechovwen OC. 2019. Detection and spatio- temporal variation of marine heatwaves in the Gulf of Guinea, Nigeria. Journal of Oceanography and Marine Science 10: 11–21. doi: 10.5897/JOMS2019.0152
  • Bajguz A. 2009. Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. Journal of Plant Physiology 166: 882–886. doi: 10.1016/j.jplph.2008.10.004
  • Band-Schmidt CJ, Morquecho L, Lechuga-Devéze CH, Anderson DM. 2004. Effects of growth medium, temperature, salinity and seawater source on the growth of Gymnodinium catenatum (Dinophyceae) from Bahía Concepción, Gulf of California, Mexico. Journal of Plankton Research 26: 1459–1470. doi: 10.1093/plankt/fbh133
  • Basu S, Mackey KR. 2018. Phytoplankton as key mediators of the biological carbon pump: their responses to a changing climate. Sustainability 10: article 869.
  • Beaugrand G, Harlay X, Edwards M. 2014. Detecting plankton shifts in the North Sea: a new abrupt ecosystem shift between 1996 and 2003. Marine Ecology Progress Series 502: 85–104. doi: 10.3354/meps10693
  • Benner I, Diner RE, Lefebvre SC, Li D, Komada T, Carpenter EJ, Stillman JH. 2013. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philosophical Transactions of the Royal Society B: Biological Sciences 368: article 20130049. doi: 10.1098/rstb.2013.0049
  • Berges JA, Varela DE, Harrison PJ. 2002. Effects of temperature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). Marine Ecology Progress Series 225: 139–146. doi: 10.3354/meps225139
  • Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z et al. 2013. Marine phytoplankton temperature versus growth responses from polar to tropical waters: outcome of a scientific community-wide study. PLoS ONE 8: e63091. doi: 10.1371/journal.pone.0063091
  • Brett M, Müller-Navarra D. 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology 38: 483–499. doi: 10.1046/j.1365-2427.1997.00220.x
  • Campbell JE, Fisch J, Langdon C, Paul VJ. 2016. Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35: 357–368. doi: 10.1007/s00338-015-1377-9
  • Chen B. 2015. Patterns of thermal limits of phytoplankton. Journal of Plankton Research 37: 285–292. doi: 10.1093/plankt/fbv009
  • Chivers WJ, Edwards M, Hays GC. 2020. Phenological shuffling of major marine phytoplankton groups over the last six decades. Diversity and Distributions 26: 536–548. doi: 10.1111/ddi.13028
  • Costello JC, Chisholm SW. 1981. The influence of cell size on the growth rate of Thalassiosira weissflogii. Journal of Plankton Research 3: 415–419. doi: 10.1093/plankt/3.3.415
  • Dosio A. 2017. Projection of temperature and heat waves for Africa with an ensemble of CORDEX Regional Climate Models. Climate Dynamics 49: 493–519. doi: 10.1007/s00382-016-3355-5
  • Falk S, Maxwell DP, Laudenbach DE, Huner NPA. 1996. Photosynthetic adjustment to temperature. In: Baker NR (ed), Photosynthesis and the environment. The Netherlands, Dordrecht: Springer. pp 367–385.
  • Feng Y, Warner ME, Zhang Y, Sun J, Fu FX, Rose JM, Hutchins DA. 2008. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). European Journal of Phycology 43: 87–98. doi: 10.1080/09670260701664674
  • Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, et al. (eds). 2014. Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press.
  • Fogg GE. 2001. Algal adaptation to stress – some general remarks. In: Rai LC, Gaur JP (eds), Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Berlin: Springer. pp 1–20.
  • Frölicher TL, Fischer EM, Gruber N. 2018. Marine heatwaves under global warming. Nature 560: 360–364. doi: 10.1038/s41586-018-0383-9
  • Gao Y, Smith G, Alberte R. 2000. Temperature dependence of nitrate reductase activity in marine phytoplankton: biochemical analysis and ecological implications. Journal of Phycology 36: 304–313. doi: 10.1046/j.1529-8817.2000.99195.x
  • Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M et al. 2009. Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biology 15: 1090–1103. doi: 10.1111/j.1365-2486.2008.01823.x
  • Hansen PJ. 1989. The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Marine Ecology Progress Series 53: 105–116. doi: 10.3354/meps053105
  • Hardman-Mountford NJ, McGlade JM. 2003. Seasonal and interannual variability of oceanographic processes in the Gulf of Guinea: an investigation using AVHRR sea surface temperature data. International Journal of Remote Sensing 24: 3247–3268. doi: 10.1080/0143116021000021297
  • Harrison PJ, Thompson PA, Guo M, Taylor FJR. 1993. Effects of light, temperature and salinity on the growth rate of harmful marine diatoms, Chaetoceros convolutus and C. concavicornis, that kill netpen salmon. Journal of Applied Phycology 5: article 259. doi: 10.1007/BF00004028
  • Hinder SL, Hays GC, Edwards M, Roberts EC, Walne AW, Gravenor MB. 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change 2: 271–275. doi: 10.1038/nclimate1388
  • Hitchcock GL. 1982. A comparative study of the size-dependent organic composition of marine diatoms and dinoflagellates. Journal of Plankton Research 4: 363–377. doi: 10.1093/plankt/4.2.363
  • Hobday AJ, Alexander LV, Perkins SE, Smale DA, Straub SC, Oliver ECJ, Benthuysen JA. 2016. A hierarchical approach to defining marine heatwaves. Progress in Oceanography 141: 227–238. doi: 10.1016/j.pocean.2015.12.014
  • Huertas IE, Rouco M, Lopez-Rodas V, Costas E. 2011. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proceedings of the Royal Society B: Biological Sciences 278: 3534–3543. doi: 10.1098/rspb.2011.0160
  • Irwin AJ, Finkel ZV, Müller-Karger FE, Troccoli Ghinaglia L. 2015. Phytoplankton adapt to changing ocean environments. Proceedings of the National Academy of Sciences of the United States of America 112: 5762–5766. doi: 10.1073/pnas.1414752112
  • Itzhaki RF, Gill DM. 1964. A micro-biuret method for estimating proteins. Analytical Biochemistry 9: 401–410. doi: 10.1016/0003-2697(64)90200-3
  • Kong B, Vigil RD. 2014. Simulation of photosynthetically active radiation distribution in algal photobioreactors using a multidimensional spectral radiation model. Bioresource Technology 158: 141–148. doi: 10.1016/j.biortech.2014.01.052
  • Laurance WF, Useche DC, Shoo LP, Herzog SK, Kessler M, Escobar F et al. 2011. Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation 144: 548–557. doi: 10.1016/j.biocon.2010.10.010
  • Li WK. 1980. Temperature adaptation in phytoplankton: cellular and photosynthetic characteristics. In: Falkowski PG (ed.), Primary productivity in the sea. Boston, Massachusetts: Springer: pp 259–279.
  • Lomas MW, Glibert PM. 1999. Interactions between NH+4 and NO−3 uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Marine Biology 133: 541–551. doi: 10.1007/s002270050494
  • Mansour MP, Volkman JK, Blackburn SI. 2003. The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate Gymnodinium sp. in batch culture. Phytochemistry 63: 145–153. doi: 10.1016/S0031-9422(03)00052-9
  • Marbà N, Duarte CM. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology 16: 2366–2375. doi: 10.1111/j.1365-2486.2009.02130.x
  • Meehl GA, Stocker TF, Collins W, Friedlingstein P, Gaye A, Gregory J, et al. 2007. Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al. (eds.), Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York: Cambridge University Press. pp 747–845.
  • Mensah MA, Koranteng KA. 1988. A review of the oceanography and fisheries resources in the coastal waters of Ghana, 1981–1986. Unpublished report. Tema, Ghana: Fisheries Scientific Survey Division, Ministry of Fisheries and Aquaculture Development.
  • Mills KE, Pershing AJ, Brown CJ, Chen Y, Chiang FS, Holland DS et al. 2013. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography (Washington DC) 26: 191–195.
  • Morris I, Glover HE. 1974. Questions on the mechanism of temperature adaptation in marine phytoplankton. Marine Biology 24: 147–154. doi: 10.1007/BF00389349
  • Nalley JO, O’Donnell DR, Litchman E. 2018. Temperature effects on growth rates and fatty acid content in freshwater algae and cyanobacteria. Algal Research 35: 500–507. doi: 10.1016/j.algal.2018.09.018
  • Neidleman SL. 1987. Effects of temperature on lipid unsaturation. Biotechnology and Genetic Engineering Reviews 5: 245–268. doi: 10.1080/02648725.1987.10647839
  • Nguyen KDT, Morley SA, Lai CH, Clark MS, Tan KS, Bates AE, Peck LS. 2011. Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS ONE 6: e29340. doi: 10.1371/journal.pone.0029340
  • O’Brien WJ. 1972. Limiting factors in phytoplankton algae: their meaning and measurement. Science 178: 616–617. doi: 10.1126/science.178.4061.616
  • Rasconi S, Winter K, Kainz MJ. 2017. Temperature increase and fluctuation induce phytoplankton biodiversity loss: evidence from a multi-seasonal mesocosm experiment. Ecology and Evolution 7: 2936–2946. doi: 10.1002/ece3.2889
  • Rausch T. 1981. The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass. I. Comparison of methods for extracting protein. Hydrobiologia 78: 237–251. doi: 10.1007/BF00008520
  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture (Amsterdam, Netherlands) 211: 195–214. doi: 10.1016/S0044-8486(01)00875-4
  • Richmond A. 1986. Cell response to environmental factors. In: Richmond A (ed.), CRC handbook of microalgal mass culture. Boca Raton, Florida: CRC Press. pp 69–106.
  • Sager JC, McFarlane JC. 1997. Radiation. In: Langhans RW, Tibbitts TW (eds), Plant growth chamber handbook. North Central Regional Research Publication No. 340. Iowa Agriculture and Home Economics Experiment Station Special Report No. 99. Ames, Iowa: Iowa State University. pp 1–30.
  • Schaum CE. 2019. Enhanced biofilm formation aids adaptation to extreme warming and environmental instability in the diatom Thalassiosira pseudonana and its associated bacteria. Limnology and Oceanography 64: 441–460. doi: 10.1002/lno.11050
  • Schaum CE, Rost B, Collins S. 2016. Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton. ISME Journal 10: 75–84. doi: 10.1038/ismej.2015.102
  • Schaum CE, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P. 2017. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nature Ecology and Evolution 1: 1–7. doi: 10.1038/s41559-017-0094
  • Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. 2018. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nature Communications 9: 1–14. doi: 10.1038/s41467-017-02088-w
  • Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. 2014. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nature Climate Change 4: 1024–1030. doi: 10.1038/nclimate2379
  • Sokal RR, Rohlf FJ. 1995. Biometry (3rd edn). New York: Freeman and Co.
  • Sterner RW, Hessen DO. 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Annual Review of Ecology and Systematics 25: 1–29. doi: 10.1146/annurev.es.25.110194.000245
  • Stillman JH. 2003. Acclimation capacity underlies susceptibility to climate change. Science 301: 65. doi: 10.1126/science.1083073
  • Strzepek RF, Price NM. 2000. Influence of irradiance and temperature on the iron content of the marine diatom Thalassiosira weissflogii (Bacillariophyceae). Marine Ecology Progress Series 206: 107–117. doi: 10.3354/meps206107
  • Svenning JB, Dalheim L, Eilertsen HC, Vasskog T. 2019. Temperature dependent growth rate, lipid content and fatty acid composition of the marine cold-water diatom Porosira glacialis. Algal Research 37: 11–16. doi: 10.1016/j.algal.2018.10.009
  • Teoh ML, Phang SM, Chu WL. 2013. Response of Antarctic, temperate, and tropical microalgae to temperature stress. Journal of Applied Phycology 25: 285–297. doi: 10.1007/s10811-012-9863-8
  • Thomas WH. 1966. Effects of temperature and illuminance on cell division rates of three species of tropical oceanic phytoplankton. Journal of Phycology 2: 17–22. doi: 10.1111/j.1529-8817.1966.tb04586.x
  • Thomas MK, Kremer CT, Klausmeier CA, Litchman E. 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338: 1085–1088. doi: 10.1126/science.1224836
  • Thompson PA, Guo MX, Harrison PJ, Whyte JN. 1992a. Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. Journal of Phycology 28: 488–497. doi: 10.1111/j.0022-3646.1992.00488.x
  • Thompson PA, Guo MX, Harrison PJ. 1992b. Effects of temperature. I. On the biochemical composition of eight species of marine phytoplankton. Journal of Phycology 28: 481–488. doi: 10.1111/j.0022-3646.1992.00481.x
  • Tomaselli L, Giovannetti L, Sacchii A, Bochi F. 1988. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Stadler T, Mellion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds), Algal biotechnology. London: Elsevier Applied Science. pp 303–314.
  • Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C et al. 2013. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nature Climate Change 3: 979–984. doi: 10.1038/nclimate1989
  • Von Dassow P, Chepurnov VA, Armbrust EV. 2006. Relationships between growth rate, cell size, and induction of spermatogenesis in the centric diatom Thalassiosira weissflogii (Bacillariophyta). Journal of Phycology 42: 887–899. doi: 10.1111/j.1529-8817.2006.00250.x
  • Wasmund N, Kownacka J, Göbel J, Jaanus A, Johansen M, Jurgensone I et al. 2017. The diatom/dinoflagellate index as an indicator of ecosystem changes in the Baltic Sea 1. Principle and handling instruction. Frontiers in Marine Science 4: article 22.
  • Wohlers-Zöllner J, Breithaupt P, Walther K, Jürgens K, Riebesell U. 2011. Temperature and nutrient stoichiometry interactively modulate organic matter cycling in a pelagic algal– bacterial community. Limnology and Oceanography 56: 599–610. doi: 10.4319/lo.2011.56.2.0599
  • Wood AM, Everroad RC, Wingard LM. 2005. Measuring growth rates in microalgal cultures. Algal Culturing Techniques 18: 269–288.
  • Yvon-Durocher G, Dossena M, Trimmer M, Woodward G, Allen AP. 2015. Temperature and the biogeography of algal stoichiometry. Global Ecology and Biogeography 24: 562–570. doi: 10.1111/geb.12280
  • Yvon-Durocher G, Schaum CE, Trimmer M. 2017. The temperature dependence of phytoplankton stoichiometry: investigating the roles of species sorting and local adaptation. Frontiers in Microbiology 8: article 2003. doi: 10.3389/fmicb.2017.02003
  • Zhu CJ, Lee YK, Chao TM. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. Journal of Applied Phycology: 451–457. doi: 10.1023/A:1007973319348

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.