110
Views
0
CrossRef citations to date
0
Altmetric
Research Papers

Low hypoxia tolerance in larvae of the sardine Sardinops sagax and anchovy Engraulis encrasicolus may limit their stock recovery in the northern Benguela upwelling system

ORCID Icon, & ORCID Icon
Pages 189-200 | Received 01 Mar 2023, Accepted 01 Jul 2023, Published online: 30 Oct 2023

References

  • Auel H, Jennerjahn T, Salita J. 2009. Tropical aquatic ecosystems ‒ from large to small. In: Wolff M (ed.), Tropical waters and their living resources: ecology, assessment and management. Bremen, Germany: Verlag H.M. Hauschild GmbH. pp 28–29.
  • Bakun A. 1990. Global climate change and intensification of coastal ocean upwelling. Science 247: 198–201. doi: 10.1126/science.247.4939.198
  • Bakun A, Weeks SJ. 2004. Greenhouse gas build-up, sardines, submarine eruptions and the possibility of abrupt degradation of intense marine upwelling ecosystems. Ecology Letters 7: 1015–1023. doi: 10.1111/j.1461-0248.2004.00665.x
  • Bakun A, Black BA, Bograd SJ, García-Reyes M, Miller AJ, Rykaczewski RR, Sydeman WJ. 2015. Anticipated effects of climate change on coastal upwelling ecosystems. Current Climate Change Reports 1: 85–93. doi: 10.1007/s40641-015-0008-4
  • Bass A, Brdiczka D, Eyer P, Hofer S, Pette D. 1969. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. European Journal of Biochemistry 10: 198–206. doi: 10.1111/j.1432-1033.1969.tb00674.x
  • Beamish FWH. 1978. Swimming capacity. In: Hoar WS, Randall DJ (eds), Fish physiology, volume 7: Locomotion. New York: Academic Press. pp 101–187.
  • Berg JM, Tymoczko JL, Stryer L. 2002. Biochemistry. Section 16.1: Glycolysis is an energy-conversion pathway in many organisms (5th edn). London: WH Freeman.
  • Berges AJ, John C, Ruff CJ, James S. 1990. Relationship between body size, growth rate, and maximal enzyme activities in the brine shrimp Artemia franciscana. Biological Bulletin 179: 287–296. doi: 10.2307/1542320
  • Boyer D, Cole J, Bartholomae C. 2000. Southwestern Africa: northern Benguela Current region. Marine Pollution Bulletin 41: 123–140. doi: 10.1016/S0025-326X(00)00106-5
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254. doi: 10.1016/0003-2697(76)90527-3
  • Childress JJ, Thuesen EV. 1992. Metabolic potential of deep-sea animals: regional and global scales. In: Rowe GT, Pariente V (eds), Deep-sea food chains and global carbon cycle. Amsterdam, The Netherlands: Kluwer Academic Publishers. pp 217–236.
  • Cooper RU, Clough LM, Farwell MA, West TL. 2002. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. Journal of Experimental Marine Biology and Ecology 279: 1–20. doi: 10.1016/S0022-0981(02)00329-5
  • Cury P, Shannon L. 2004. Regime shifts in upwelling ecosystems: observed changes and possible mechanisms in the northern and southern Benguela. Progress in Oceanography 60: 223–243. doi: 10.1016/j.pocean.2004.02.007
  • Dahlhoff EP. 2004. Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annual Review of Physiology 66: 183–207. doi: 10.1146/annurev.physiol.66.032102.114509
  • Díaz E, Txurruka JM, Villate F. 2008. Biochemical composition and condition in anchovy larvae Engraulis encrasicolus during growth. Marine Ecology Progress Series 361: 227–238. doi: 10.3354/meps07443
  • Ekau W, Verheye HM. 2005. Influence of oceanographic fronts and low oxygen on the distribution of ichthyoplankton in the Benguela and southern Angola currents. African Journal of Marine Science 27: 629–639. doi: 10.2989/18142320509504123
  • Ekau W, Amel H, Pörtner HO, Gilbert D. 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7: 1669–1699. doi: 10.5194/bg-7-1669-2010
  • Ekau W, Auel H, Hagen W, Koppelmann R, Wasmund N, Bohata K et al. 2018. Pelagic key species and mechanisms driving energy flows in the northern Benguela upwelling ecosystem and their feedback into biogeochemical cycles. Journal of Marine Systems 188: 49–62. doi: 10.1016/j.jmarsys.2018.03.001
  • Geist SJ. 2013. Early life-history traits of coastal pelagic fishes in the northern Benguela Current ecosystem off Namibia. PhD thesis, University of Bremen, Germany.
  • Geist SJ, Ekau W, Kunzmann A. 2013. Energy demand of larval and juvenile Cape horse mackerels, Trachurus capensis, and indications of hypoxia tolerance as benefit in a changing environment. Marine Biology 160: 3221–3232. doi: 10.1007/s00227-013-2309-2
  • Geist SJ, Kunzmann A, Verheye HM, Eggert A, Schukat A, Ekau W. 2015. Distribution, feeding behaviour, and condition of Cape horse mackerel early life stages, Trachurus capensis, under different environmental conditions in the northern Benguela upwelling ecosystem. ICES Journal of Marine Science 72: 543–557. doi: 10.1093/icesjms/fsu087
  • Grote B, Ekau W, Stenevik EK, Clemmesen C, Verheye HM, Lipinski MR, Hagen W. 2012. Characteristics of survivors: growth and nutritional condition of early stages of the hake species Merluccius paradoxus and M. capensis in the southern Benguela ecosystem. ICES Journal of Marine Science 69: 553–562. doi: 10.1093/icesjms/fss020
  • Gilly WF, Beman JM, Litvin SY, Robison BH. 2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annual Review of Marine Science 5: 393–420. doi: 10.1146/annurev-marine-120710-100849
  • Helly JJ, Levin LA. 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I: Oceanographic Research Papers 51: 1159–1168. doi: 10.1016/j.dsr.2004.03.009
  • Heymans JJ, Tomczak MT. 2016. Regime shifts in the Northern Benguela ecosystem: challenges for management. Ecological Modelling 331: 151–159. doi: 10.1016/j.ecolmodel.2015.10.027
  • Heymans JJ, Shannon LJ, Jarre-Teichmann A. 2004. Changes in the northern Benguela ecosystem over three decades: 1970s, 1980s and 1990s. Ecological Modelling 172: 175–195. doi: 10.1016/j.ecolmodel.2003.09.006
  • Hickey AJR, Clements KD. 2003. Key metabolic enzymes and muscle structure in triplefin fishes (Tripterygiidae): a phylogenetic comparison. Journal of Comparative Physiology B 173: 113–123. doi: 10.1007/s00360-002-0313-9
  • Hochachka PW. 1992. Metabolic biochemistry and the making of a mesopelagic mammal. Experientia 248: 570–575. doi: 10.1007/BF01920241
  • Hochachka PW, Storey KB, Baldwin J. 1975. Gill citrate synthase from an abyssal fish. Comparative Biochemistry and Physiology 52B: 43–49.
  • Hochachka PW, Stanley C, Merkt J, Sumar-Kalinowski J. 1982. Metabolic meaning of elevated levels of oxidative enzymes in high-altitude-adapted animals: an interpretive hypothesis. Respiration Physiology 52: 303–313. doi: 10.1016/0034-5687(83)90087-7
  • Houde ED. 1987. Fish early life dynamics and recruitment variability. American Fisheries Society Symposium 2: 17–29.
  • Hunter JR. 1971. Sustained speed of jack mackerel, Trachurus symmetricus. Fishery Bulletin 69: 267–271.
  • Huse I, Hamukuaya H, Boyer DC, Malan PE, Strømme T. 1998. The diurnal vertical dynamics of Cape hake and their potential prey. African Journal of Marine Science 19: 365–376. doi: 10.2989/025776198784126746
  • Hutchings L, Beckley LE, Griffiths M, Roberts MR, Sundby S, van der Lingen CD. 2002. Spawning on the edge: spawning grounds and nursery areas around the South African coast. Marine and Freshwater Research 53: 307–318. doi: 10.1071/MF01147
  • Hutchings L, van der Lingen CD, Shannon LJ, Crawford RJM, Verheye HMS, Bartholomae CH et al. 2009. The Benguela Current: an ecosystem of four components. Progress in Oceanography 83: 15–32. doi: 10.1016/j.pocean.2009.07.046
  • Jong YA, Davis EJ. 1983. Reconstruction of steady state in cell-free systems: interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Archives of Biochemistry and Biophysics 222: 179–191. doi: 10.1016/0003-9861(83)90515-5
  • Kreiner A, Stenevik EK, Ekau W. 2009. Sardine Sardinops sagax and anchovy Engraulis encrasicolus larvae avoid regions with low dissolved oxygen concentration in the northern Benguela Current system. Journal of Fish Biology 74: 270–277. doi: 10.1111/j.1095-8649.2008.02124.x
  • Kreiner A, Yemane D, Stenevik EK, Moroff NE. 2011. The selection of spawning location of sardine (Sardinops sagax) in the northern Benguela after changes in stock structure and environmental conditions. Fisheries Oceanography 20: 560–569. doi: 10.1111/j.1365-2419.2011.00602.x
  • Kreiner A, Yemane D, Stenevik EK. 2014. Spawning habitats of Cape horse mackerel (Trachurus capensis) in the northern Benguela upwelling region. Fisheries Oceanography 24: 46–55. doi: 10.1111/fog.12054
  • Lachkar Z, Gruber N. 2012. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences 9: 293–308. doi: 10.5194/bg-9-293-2012
  • Lushchak VI, Bagnyukova TV, Storey KB. 1998. Effect of hypoxia on the activity and binding of glycolytic and associated enzymes in sea scorpion tissues. Brazilian Journal of Medical and Biological Research 31: 1059–1067. doi: 10.1590/S0100-879X1998000800005
  • Michalowski K. 2010. Wachstum und trophische Stellung der subtropischen Grundel Sufflogobius bibarbatus im Nahrungsgefüge des nördlichen Benguela Auftriebssystems. Diplomarbeit, University of Bremen, Germany.
  • Miller D, Poucher S, Coiro LL. 2002. Determination of lethal dissolved oxygen levels for selected marine and estuarine fishes, crustaceans, and a bivalve. Marine Biology 140: 287–296. doi: 10.1007/s002270100702
  • Miller NA, Chen X, Stillman JH. 2014. Metabolic physiology of the invasive clam Potamocorbula amurensis: the interactive role of temperature, salinity, and food availability. PLoS ONE 9: e91064. doi: 10.1371/journal.pone.0091064
  • Mohrholz V, Bartholomae CH, van der Plas AK, Lass HU. 2008. The seasonal variability of the northern Benguela undercurrent and its relation to the oxygen budget on the shelf. Continental Shelf Research 28: 424–441. doi: 10.1016/j.csr.2007.10.001
  • Monteiro PMS, van der Plas A, Mohrholz V, Mabille E, Pascall A, Joubert W. 2006. Variability of natural hypoxia and methane in a coastal upwelling system: oceanic physics or shelf biology? Geophysical Research Letters 33: L16614. doi: 10.1029/2006GL026234
  • Newsholme EA, Crabtree B. 1986. Maximum catalytic activity of some key enzymes in provision of physiologically useful information about metabolic fluxes. Journal of Experimental Zoology 239: 159–167. doi: 10.1002/jez.1402390203
  • Ombres EA, Donnelly J, Clarke ME, Harms JH, Torres JJ. 2011. Aerobic and anaerobic enzyme assays in southern California rockfish: proxies for physiological and ecological data. Journal of Experimental Marine Biology and Ecology 399: 201–207. doi: 10.1016/j.jembe.2010.11.007
  • Pang X, Fu S, Zhang Y. 2016. Acclimation temperature alters the relationship between growth and swimming performance among juvenile common carp (Cyprinus carpio). Comparative Biochemistry and Physiology, Part A 199: 111–119. doi: 10.1016/j.cbpa.2016.06.011
  • Pillar SC, Barange M. 1998. Feeding habits, daily ration and vertical migration of the Cape horse mackerel off South Africa. South African Journal of Marine Science 19: 263–274. doi: 10.2989/025776198784126683
  • Pitcher GC, Aguirre-Velarde A, Breitburg D, Cardich J, Carstensen J, Conley DJ et al. 2021 System controls of coastal and open ocean oxygen depletion. Progress in Oceanography 197: article 102613. doi: 10.1016/j.pocean.2021.102613
  • Richards JG. 2011. Physiological, behavioural and biochemical adaptations of intertidal fishes to hypoxia. Journal of Experimental Biology 214: 191–199. doi: 10.1242/jeb.047951
  • Sidell BD, Driedzic WR, Stowe DB, Johnston IA. 1987. Biochemical correlations of power development and metabolic fuel preferenda in fish hearts. Physiological Zoology 60: 221–232. doi: 10.1086/physzool.60.2.30158646
  • Simon S. 2014. Effects of food quantity on growth and condition of Trachurus spp. larvae (horse mackerel) in the northern Benguela upwelling system. MSc thesis, University of Bremen, Germany.
  • Sullivan KM, Somero GN. 1980. Enzyme activities of fish skeletal muscle and brain as influenced by depth of occurrence and habits of feeding and locomotion. Marine Biology 60: 91–99. doi: 10.1007/BF00389152
  • Summerhayes CP, Kroon D, Rosell-Melé A, Jordan RW, Schrader HJ, Hearn R et al. 1995. Variability in the Benguela Current upwelling system over the past 70 000 years. Progress in Oceanography 35: 207–251. doi: 10.1016/0079-6611(95)00008-5
  • Utne-Palm AC, Salvanes AGV, Currie B, Kaartvedt S, Nilsson GE, Braithwaite VA et al. 2010. Trophic structure and community stability in an overfished ecosystem. Science 329: 333–336. doi: 10.1126/science.1190708
  • Vetter R, Lynn E. 1997. Bathymetric demography, enzyme activity patterns, and bioenergetics of deep-living scorpaenid fishes (genera Sebastes and Sebastolobus): paradigms revisited. Marine Ecology Progress Series 155: 173–188. doi: 10.3354/meps155173
  • Weeks SJ, Currie B, Bakun A. 2002. Satellite imaging: massive emissions of toxic gas in the Atlantic. Nature 415: 493–494. doi: 10.1038/415493b
  • Wu RSS. 2002. Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin 45: 35–45. doi: 10.1016/S0025-326X(02)00061-9
  • Zakhartsev M, Johansen T, Pörtner HO, Blust R. 2004. Effects of temperature acclimation on lactate dehydrogenase of cod (Gadus morhua): genetic, kinetic and thermodynamic aspects. Journal of Experimental Biology 207: 95–112. doi: 10.1242/jeb.00708