321
Views
24
CrossRef citations to date
0
Altmetric
Review Paper

Wood anatomical and chemical properties related to the pulpability of Eucalyptus globulus: a review

, , &
Pages 1-8 | Received 05 Jun 2016, Accepted 26 Nov 2016, Published online: 22 Feb 2017

References

  • Aguayo MG, Ferraz A, Elissetche JP, Masarin F, Mendonça RT. 2013. Lignin chemistry and topochemistry during kraft delignification of Eucalyptus globulus genotypes with contrasting pulpwood characteristics. Holzforschung 68: 623–629.
  • Aguayo MG, Ruiz J, Norambuena M, Mendonça RT. 2015. Structural featues of dioxane lignin from Eucalyptus globulus and their relationship with the pulp yield of contrasting genotypes. Maderas: Ciencia y Tecnología 17: 625–636.
  • Anterola A, Lewis N. 2002. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/ mutations on lignifications and vascular integrity. Phytochemistry 61: 221–294. doi: 10.1016/S0031-9422(02)00211-X
  • Baucher M, Chabbert B, Pilate G, van Doorsselaere J, Tollier MT, Petit-Conil M, Cornu D, Monties B, van Montagu M, Inzé D, Jouanin L, Boerjan W. 1996. Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar (Populus tremula × P. alba). Plant Physiology 112: 1479–1490. doi: 10.1104/pp.112.4.1479
  • Baucher M, Halpin C, Petit Conil M, Boerjan W. 2003. Lignin: genetic engineering and impact on pulping. Critical Reviews in Biochemistry and Molecular Biology 38: 305–350. doi: 10.1080/10409230391036757
  • Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology. 54: 519–546. doi: 10.1146/annurev.arplant.54.031902.134938
  • Butterfield B. 2006. The structure of wood: form and function. In: Walker JCF (ed), Primary wood processing. Dordrecht: Springer. pp 1–22.
  • Calvo-Flores FG, Dobado JA. 2010. Lignin as renewable raw material. ChemSusChem 3: 1227–1235. doi: 10.1002/cssc.201000157
  • Carrillo I, Aguayo MG, Valenzuela S, Mendonça RT, Elissetche JP. 2015. Variations in wood anatomy and fiber biometry of Eucalyptus globulus genotypes with different wood density. Wood Research 60: 1–10.
  • Carrillo I, Elissetche JP, Valenzuela S, Mendonça RT. 2013. Anatomical elements formation in hardwoods: a review from a genomic perspective. Maderas: Ciencia y Tecnología 15: 93–104.
  • Chiang VL, Funaoka M. 1990. The dissolution and condensation reactions of guaiacyl and syringyl units in residual lignin during kraft delignification of Sweetgum. Holzforschung 44: 147–155. doi: 10.1515/hfsg.1990.44.2.147
  • Clarke CR, Palmer B, Gouden D. 2008. Understanding and adding value to Eucalyptus fibre. Southern Forests 70: 169–174. doi: 10.2989/SOUTH.FOR.2008.70.2.12.540
  • Collins DJ, Piloti CA, Wallis AFA. 1990. Correlation of chemical composition and kraft pulping properties of some Papua New Guinea reforestation woods. Appita Journal 43: 193–195.
  • Costa CAE, Pinto PCR, Rodrigues AE. 2014. Evaluation of chemical processing impact on E. globulus wood lignin and comparison with bark lignin. Industrial Crops and Products 61: 479–491. doi: 10.1016/j.indcrop.2014.07.045
  • Cotterill P, Macreae S. 1997. Improving eucalyptus pulp and paper quality using genetic selection and good organization. Tappi Journal 80(6): 82–89.
  • Dean GH. 1995. Objectives for wood fibre quality and uniformity. In: Potts BM, Borralho NMG, Reid JB, Cromer RN, Tibbits WN, Raymond CA (eds), Eucalypts plantations: improving fibre yield and quality: CRCTHF-IUFRO conference, 19–24 February, Hobart, Australia. Hobart: CRC for Temperate Hardwood Forestry. pp 5–9.
  • del Río JC, Gutiérrez A, Hernando M, Landín P, Romero J, Martínez AT. 2005. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. Journal of Analytical and Applied Pyrolysis 74: 110–115. doi: 10.1016/j.jaap.2004.10.010
  • Doughty RW. 2000. The Eucalyptus: a natural and commercial history of the gum tree. Baltimore: John Hopkins University Press.
  • Downes GM, Hudson IL, Raymond CA, Dean GH, Michell AJ, Schimleck LR, Evans R, Muneri A. 1997. Sampling plantation eucalypts for wood and fibre properties. Melbourne: CSIRO Publishing.
  • Dutt D, Tyagi CH. 2011. Comparison of various Eucalyptus species for their morphological, chemical. Pulp and paper making characteristics. Indian Journal of Chemical Technology 18: 145–151.
  • Ek M, Gellerstedt G, Henriksson G (eds). 2009. Pulp and paper chemistry and technology, vol. 1: Wood chemistry and wood biotechnology. Berlin: Walter de Gruyter.
  • Elissetche JP, Valenzuela S, García R, Norambuena M, Iturra C, Rodríguez J, Mendonça RT, Balocchi C. 2011. Transcript abundance of enzymes involved in lignin biosynthesis of Eucalyptus globulus genotypes with contrasting levels of pulp yield and wood density. Tree Genetics and Genomes 7: 697–705. doi: 10.1007/s11295-011-0367-5
  • Franke R, McMichael C, Meyer K, Shirley A, Cusumano J, Chapple C. 2000. Modified lignin in tobacco plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. The Plant Journal 22: 223–234. doi: 10.1046/j.1365-313x.2000.00727.x
  • Gallina G, Cabeza A, Biasi P, García-Serna J. 2016. Optimal conditions for hemicelluloses extraction from Eucalyptus globulus wood: hydrothermal treatment in a semi-continuous reactor. Full Processing Technology 148: 350–360. doi: 10.1016/j.fuproc.2016.03.018
  • Gellerstedt G. 2009. Chemistry of bleaching of chemical pulp. In: Ek M, Gellerstedt G, Henriksson G (eds), Pulp and paper chemistry and technology, vol. 2: Pulping chemistry and technology. Berlin: Walter de Gruyter. pp 97–104.
  • Gomes FJB, Colodette JL, Burnet A, Batalha LAR, Santos FA, Demuner IF. 2015. Thorough characterization of Brazilian new generation of eucalypt clones and grass for pulp production. International Journal of Forestry Research 2015: Art. #814071, 10 pages. doi: 10.1155/2015/814071
  • Gomide J, Colodette J, Oliveira R, Silva C. 2005. Technological characterization of the new generation of Eucalyptus clones in Brazil for kraft pulp production. Revista Árvore 29: 129–137. doi: 10.1590/S0100-67622005000100014
  • Gominho J, Lourenço A, Neiva D, Fernandes L, Amaral ME, Duarte AP, Simoes R, Pereira H. 2015. Variation of wood pulping and bleached pulp properties along the stem in mature Eucalyptus globulus trees. BioResources 10: 7808–7816. doi: 10.15376/biores.10.4.7808-7816
  • González-Vila FJ, Almendros G, del Río JC, Martin F, Gutiérrez A, Romero J. 1999. Ease of delignification assessment of wood from different Eucalyptus species by pyrolysis (TMAH)-GC/MS and CP/MAS 13C-NMR spectrometry. Journal of Analytical and Applied Pyrolysis 49: 295–305. doi: 10.1016/S0165-2370(98)00097-7
  • Guerra A, Elissetche J, Norambuena M, Freer J, Valenzuela J, Rodríguez J, Balocchi C. 2008. Influence of lignin structural features on Eucalyptus globulus kraft pulping. Industrial and Engineering Chemistry Research 47: 8542–8549. doi: 10.1021/ie800320d
  • Huntley S, Ellis D, Gilbert M, Chapple C, Mansfield S. 2003. Significant increase in pulping efficiency in C4H:F5H-transformed poplars: improved chemical savings and reduced environmental toxins. Journal of Agricultural and Food Chemistry 51: 6178–6183. doi: 10.1021/jf034320o
  • Jorge F, Quilhó T, Pereira H. 2000. Variability of fibre length in wood and bark in Eucalyptus globulus. IAWA Journal 21: 41–48. doi: 10.1163/22941932-90000235
  • Kawaoka A, Nanto K, Ishii K, Ebinuma H. 2006. Reduction of lignin content by supression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis. Silvae Genetica 55: 269–277.
  • Kibblewhite RP, Evans R, Riddell MJC. 2004. Interrelationships between kraft handsheet, and wood fiber and chemical properties for the trees and logs of 29 Eucalyptus fastigata and 29 E. nitens. Appita Journal 57: 317–325.
  • Kibblewhite RP, Johnson BI, Shelbourne CJA. 2000. Kraft pulp qualities of Eucalyptus nitens, E. globulus, and E. maidenii, at ages 8 and 11 years. New Zealand Journal of Forestry Science 30: 447–457.
  • Kibblewhite RP, Riddell MJC. 2000. Wood and kraft fibre property variation within and among nine trees of Eucalyptus nitens. Appita Journal 53: 237–244.
  • Kube PD, Raymond CA, Banham PW. 2001. Genetic parameters for diameter, basic density, cellulose content and fibre properties for Eucalyptus nitens. Forest Genetics 8: 285–294.
  • Li C, Zhao X, Wang A, Huber GW, Zhang T. 2015. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews 115: 11559–11624. doi: 10.1021/acs.chemrev.5b00155
  • Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL. 2003. Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proceedings of the National Academy of Sciences of the USA 100: 4939–4944. doi: 10.1073/pnas.0831166100
  • Liang X, Liu J, Fu Y, Chang J. 2016. Influence of anti-solvents on lignin fractionation of Eucalyptus globulus via green solvent system pretreatment. Separation and Purification Technology 163: 258–266. doi: 10.1016/j.seppur.2016.03.006
  • Lima JT, Breese MC, Cahalan CM. 2000. Genotype-environment interaction in wood basic density of Eucalyptus clones. Wood Science and Technology 34: 197–206. doi: 10.1007/s002260000041
  • Lourenço A, Gominho J, Marques AV, Pereira H. 2012. Reactivity of syringyl and guaiacyl lignin units and delignification kinetics in the kraft pulping of Eucalyptus globulus wood using Py-GC–MS/ FID. Bioresource Technology 123: 296–302. doi: 10.1016/j.biortech.2012.07.092
  • Lourenço A, Gominho J, Marques AV, Pereira H. 2013. Variation of lignin monomeric composition during kraft pulping of Eucalyptus globulus heartwood and sapwood. Journal of Wood Chemistry and Technology 33: 1–18. doi: 10.1080/02773813.2012.703284
  • Lourenço A, Gominho J, Pererira H. 2010. Pulping and delignification of sapwood and heartwood from Eucalyptus globulus. Journal of Pulp and Paper Science 26: 63–69.
  • Magaton AS, Colodette JL, Gouvêa AFG, Gomide JL, Muguet MCS, Pedrazzi C. 2009. Eucalyptus wood quality and its impact on kraft pulp production and use. Tappi Journal 2009(8): 32–39.
  • Magaton AS, Colodette JL, Pilo-Veloso D, Gomide JL. 2011. Behavior of Eucalyptus wood xylans across kraft cooking. Journal of Wood Chemistry and Technology 31: 58–72. doi: 10.1080/02773813.2010.484123
  • Magaton AS, Silva T, Colodette JL, Pilo-Veloso D, Reis Milagres F. 2013. Behavior of xylans from Eucalyptus species. Part 1. The influence of structural features of eucalyptus xylans on their retention in kraft pulp. Holzforschung 67: 115–122.
  • Mansfield SD, Weineisen H. 2007. Wood fiber quality and kraft pulping efficiencies of trembling aspen (Populus tremuloides Michx) clones. Journal of Wood Chemistry and Technology 27: 135–151. doi: 10.1080/02773810701700786
  • Martínez P, Pereira M, Mendonça RT. 2015. Retention and structure of xylans from Eucalyptus globulus genotypes with different pulpwood characteristics. Journal of Wood Chemistry and Technology 35: 129–136. doi: 10.1080/02773813.2014.902962
  • Meyer K, Shirley A, Cusumano J, Bell-Lelong D, Capple C. 1998. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proceedings of the National Academy of Sciences of the USA 95: 6619–6623. doi: 10.1073/pnas.95.12.6619
  • Miranda I, Pereira H. 2002. Variation in pulpwood quality with provenances and site in Eucalyptus globulus. Annals of Forest Science 59: 283–291. doi: 10.1051/forest:2002024
  • Myburg A, Potts B, Marques C, Kirst M, Gion J, Grattapaglia D, Grima Pettenati J. 2007. Eucalyptus. In: Kole C (ed.), Genome mapping and molecular breeding in plants. New York: Springer. pp 115–160.
  • Novaes E, Kirst M, Chiang V, Winter-Sederoff H, Sederoff R. 2010. Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiology 154: 1–7. doi: 10.1104/pp.110.161281
  • Novaes E, Osorio L, Drost D, Miles B, Boaventura-Novaes C, Benedict C, Dervinis C, Yu Q, Sykes R, Davis M, Martin T, Peter G, Kirst M. 2009. Quantitative genetic analysis of biomass and wood chemistry of Populus under different nitrogen levels. New Phytologist 182: 878–890. doi: 10.1111/j.1469-8137.2009.02785.x
  • Ona T, Sonoda T, Ito K, Shibata M, Tamai Y, Kojima K, Ohshima J, Yokota S, Yoshizawa N. 2001. Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations. Wood Science and Technology 35: 229–243. doi: 10.1007/s002260100090
  • Osakabe K, Chung Tsao C, Li L, Popko J, Umezawa T, Carraway D, Smeltzer R, Joshi C, Chiang V. 1999. Coniferyl aldehyde 5-hydroxylation and methylation direct syryngil lignin biosynthesis in angiosperms. Proceedings of the National Academy of Sciences of the USA 96: 8955–8960. doi: 10.1073/pnas.96.16.8955
  • Patt R, Kordsachia O, Fehr J. 2006. European hardwoods versus Eucalyptus globulus as a raw material for pulping. Wood Science and Technology 40: 39–48. doi: 10.1007/s00226-005-0042-9
  • Pinto PC, Evtuguin DV, Pascoal Neto CP. 2005. Effect of structural features of wood biopolymers on hardwood pulping and bleaching performance. Industrial and Engineering Chemistry Research 44: 9777–9784. doi: 10.1021/ie050760o
  • Pinto PC, Evtuguin DV, Pascoal Neto C, Silvestre AJD. 2002a. Behaviour of Eucalyptus globulus lignin during kraft pulping. I. Analysis by chemical degradation methods. Journal of Wood Chemistry and Technology 22: 93–108. doi: 10.1081/WCT-120013355
  • Pinto PC, Evtuguin DV, Pascoal Neto C, Silvestre AJD. 2002b. Behaviour of Eucalyptus globulus lignin during kraft pulping. II. Analysis by NMR, ESI/MS and GPC. Journal of Wood Chemistry and Technology 22: 109–125. doi: 10.1081/WCT-120013356
  • Potts B, Vaillancourt RE, Jordan GJ, Dutkowski GW, da Costa e Silva J, McKinnon GE, Steane DA, Volker PW, Lopez GA, Apiolaza L, Li J, Marques C, Borralho NMG. 2004. Exploration of the Eucalyptus globulus gene pool. In: Borralho N, Pereira JS, Marques C, Coutinho J, Madeira M, Tomé M (eds), Eucalyptus in a changing world: international IUFRO conference of the WP2.08.03 on silviculture and improvement of eucalypts, 11–15 October, Aveiro, Portugal. Aveiro: RAIZ – Instituto de Investigação da Floresta e Papel. pp 46–61.
  • Quilhó T, Miranda I, Pereira H. 2006. Within-tree variation in wood fibre biometry and basic density of the urograndis eucalypt hybrid (Eucalyptus grandis × E. urophylla). IAWA Journal 27: 243–254.
  • Ralph J. 2010. Hydroxycinnamates in lignification. Phytochemistry Reviews 9: 65–83. doi: 10.1007/s11101-009-9141-9
  • Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield RD, Ralph SA, Christensen JH, Boerjan W. 2004. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochemistry Reviews 3: 29–60. doi: 10.1023/B:PHYT.0000047809.65444.a4
  • Ramírez M, Rodríguez J, Balocchi C, Peredo M, Elissetche JP, Mendonça R, Valenzuela S. 2009a. Chemical composition and wood anatomy of Eucalyptus globulus clones: variations and relationships with pulpability and handsheet properties. Journal of Wood Chemistry and Technology 29: 43–58. doi: 10.1080/02773810802607559
  • Ramírez M, Rodríguez J, Peredo M, Valenzuela S, Mendonça R. 2009b. Wood anatomy and biometric parameters variation of Eucalyptus globulus clones. Wood Science and Technology 43: 131–141. doi: 10.1007/s00226-008-0206-5
  • Raymond CA, Banham P, Macdonald AC. 1998. Within tree variation and genetic control of basic density, fiber length, and coarseness in Eucalyptus regnans in Tasmania. Appita Journal 51: 299–305.
  • Raymond CA, Muneri A. 2001. Nondestructive sampling of Eucalytpus globulus and E. nitens for wood properties. I. Basic density. Wood Science and Technology 35: 27–39. doi: 10.1007/s002260000078
  • Rehbein M, Pereira M, Koch G, Kordsachia O. 2010. Topochemical investigation into the delignification of Eucalyptus globulus chips during semi-chemical sulfite pulping. Wood Science and Technology 44: 435–449. doi: 10.1007/s00226-010-0363-1
  • Rencoret J, Gutiérrez A, Nieto L, Jiménez-Barbero J, Faulds CB, Kim H, Ralph J, Martínez AT, del Río JC. 2011. Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiology. 155: 667–682. doi: 10.1104/pp.110.167254
  • Rencoret J, Marques G, Gutiérrez A, Ibarra D, Li J, Gellerstedt G, Santos JI, Jiménez-Barbero J, Martínez AT, del Río JC. 2008. Structural characterization of milled wood lignin from different eucalypt species. Holzforschung 62: 514–526. doi: 10.1515/HF.2008.096
  • Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx CA, Weckhuysen BM. 2016. Paving the way for lignin valorization: recent advances in bioengineering, biorefining and catalysis. Angewandte Chemie International Edition 55: 8164–8215. doi: 10.1002/anie.201510351
  • Romaní A, Ruíz HA, Teixeira JA, Domingues L. 2016. Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: an integrated and intensified approach. Renewable Energy 95: 1–9. doi: 10.1016/j.renene.2016.03.106
  • Rutkowska EW, Wollboldt P, Zuckerstätter G, Weber HK, Sixta H. 2009. Characterization of structural changes in lignin during continuous batch kraft cooking of Eucalyptus globulus. BioResources 4: 172–193.
  • Saito K, Horikawa Y, Sugiyama J, Watanabe T, Yoshinori K, Takabe K. 2016. Effect of thermochemical pretreatment on lignin alteration and cell wall microstructural degradation in Eucalyptus globulus: comparison of acid, alkali, and water pretreatments. Journal of Wood Science 62: 276–284. doi: 10.1007/s10086-016-1543-x
  • Salazar MM, Grandis A, Pattathil S, Lepikson N, Camargo ELO, Alves A, Rodrigues JC, Squina F, Cairo JPF, Buckeridge MS, Hahn MG, Pereira GAG. 2016. Eucalyptus cell wall architecture: Clues for lignocellulosic biomass deconstruction. BioEnergy Research 9: 969–979. doi: 10.1007/s12155-016-9770-y
  • Sandercock CF, Sands R, Ridoutt BG, Wilson LF, Hudson I. 1995. Factors determining wood microstructure in Eucalyptus. In: Potts BM, Borralho NMG, Reid JB, Cromer RN, Tibbits WN, Raymond CA (eds), Eucalypt plantations: improving fibre yield and quality. Hobart: CRC for Temperate Hardwood Forestry. pp 128–135.
  • Scheller H, Ulvskov P. 2010. Hemicelluloses. Annual Reviews in Plant Biology 61: 263–289. doi: 10.1146/annurev-arplant-042809-112315
  • Shinya T, Iwata E, Nakahama K, Fukuda Y, Hayashi K, Nanto K, Rosa AC, Kawaoka A. 2016. Transcriptional profiles of hybrid Eucalyptus genotypes with contrasting lignin content reveal that monolignol biosynthesis-related genes regulate wood composition. Frontiers in Plant Science 7: 443. doi: 10.3389/fpls.2016.00443
  • Sixta H. 2006. Handbook of pulp. Weinheim: Wiley-VCH.
  • Sjöström E. 1993. Wood chemistry: fundamentals and applications (2nd edn). San Diego: Academic Press.
  • Stewart J, Akiyama T, Chapple C, Ralph J, Mansfield SD. 2009. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar. Plant Physiology 150: 621–635. doi: 10.1104/pp.109.137059
  • Turnbull JW. 1999. Eucalypt plantations. New Forests 17: 37–52. doi: 10.1023/A:1006524911242
  • Turnbull JW, Pryor LD. 1984. Choice of specific and seed sources. In: Hillis WE, Brown AG (eds), Eucalyptus for wood production. London: Academic Press. pp 6–65.
  • van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier MT, Petit-Conil M, Leplé JC, Pilate G, Cornu D, Monties B, Van Montagu M, Inzé D, Boerjan W, Jouanin L. 1995. A novel lignin in poplar trees with a reduced caffeic acid/ 5-hydroxyferulic acid O-methyltransferase activity. Plant Journal 8: 855–864. doi: 10.1046/j.1365-313X.1995.8060855.x
  • Vanholme R, Morrel K, John R, Boerjan W. 2008. Lignin engineering. Plant Biology 11: 278–285.
  • Via BK, Stine M, Shupe T, So CH, Groom L. 2004. Genetic improvement of fiber length and coarseness based on paper product performance and material variability—a review. IAWA Journal 25: 401–414. doi: 10.1163/22941932-90000373
  • Wate PA, Chamshama SAO, Mugasha AG. 1999. The survival, growth and wood basic densities of 14 year old Eucalyptus camaldulensis at Michafutene, Mozambique. Southern African Forestry Journal 186: 19–27. doi: 10.1080/10295925.1999.9631238
  • Whetten R MacKay J, Sederoff R. 1998. Recent advances in understanding lignin biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 49: 585–609. doi: 10.1146/annurev.arplant.49.1.585
  • Wimmer R, Downes GM, Evans R, Rasmussen G, French J. 2002. Direct effects of wood characteristics on pulp and paper handsheet properties of Eucalyptus globulus. Holzforschung 56: 244–252. doi: 10.1515/HF.2002.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.