56
Views
1
CrossRef citations to date
0
Altmetric
Research Papers

Effects of succinic acid impregnation on physical properties of sapwood and heartwood from plantation-grown short-rotation teak

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Augustina S. 2021. Peningkatan mutu beberapa lesser-used wood species melalui teknik impregnasi dan kompregnasi. Dissertation, IPB University. Bogor, Indonesia.
  • Augustina S, Wahyudi I, Darmawan W, Malik J, Okano N, Okada T, Murayama K, Kobori H, Kojima Y, Suzuki S. 2021. Selected properties of compregnated wood using low molecular weight phenol formaldehyde and succinic anhydride. Wood Research 66 (5): 762–776. http://doi.org/10.37763/wr.1336-4561/66.5.762776.
  • Augustina S, Wahyudi I, Dwianto W, Darmawan T. 2022. Effect of sodium hydroxide, succinic acid and their combination on densified wood properties. Forest 13(2): 293–306. http://doi.org/10.3390/f13020293.
  • Bao M, Huang X, Zhang Y, Yu, W, Yu, Y. 2016. Effect of density on the hygroscopicity and surface characteristics of hybrid poplar compreg. Journal of Wood Science 62(5): 441–451. https://doi.org/10.1007/s10086-016-1573-4.
  • Bhat KM, Florence EJM. 2003. Natural decay resistance of juvenile teak wood grown in high input plantations. Holzforschung 57(5): 452–455. https://doi.org/10.1515/HF.2003.067.
  • BPS (Badan Pusat Statistik). 2017. Statistik produksi kehutanan. Jakarta, Indonesia: Badan Pusat Statistik.
  • BPS (Badan Pusat Statistik). 2020. Statistik produksi kehutanan. Jakarta, Indonesia: Badan Pusat Statistik.
  • BS (British Standards Institution). 1957. Methods of Testing Small Clear Specimens of Timber. BS 373:1957. London, United Kingdom: British Standards Institution.
  • Clark A, Daniels RF, Jordan L. 2006. Juvenile/mature wood transition in loblolly pine as defined by annual ring specific gravity, proportion of latewood, and microfibril angle. Wood Fiber and Science 38(2): 292–299.
  • Chen Y, Stark NM, Cai Z, Frihart CR, Lorenz LF, Ibach RE. 2014. Chemical modification of kraft lignin: effect on chemical and thermal properties. Bioresources 9(3): 5488–5500.
  • Couceiro J. 2016. Wood shrinkage in CT-scanning analysis. Thesis, Luleå University of Technology, Luleå, Sweden.
  • Damayanti R, Barbara O, Pandit IKN, Febrianto F, Pari G. 2018. Wood properties of 5-year-old fast grown teak. Wood Research Journal 9(2): 29–34. https://doi.org/10.51850/wrj.2018.9.2.29-34.
  • Darmawan W, Nandika D, Sari RK, Sitompul A, Rahayu I, Gardner D. 2015. Juvenile and mature wood characteristics of short and long rotation teak in Java. International Association of Wood Anatomists 36(4): 428–442. https://doi.org/10.1163/22941932-20150112.
  • Engelund ET, Thygesen LG, Svensson S, Hill CAS. 2013. A critical discussion of the physics of wood-water interaction. Wood Science and Technology 47(1): 141–161. https://doi.org/10.1007/s00226-012-0514-7.
  • Evans JW, Senft JF, Green DW. 2000. Juvenile wood effect in red alder: Analysis of physical and mechanical data to delineate juvenile and mature wood zones. Forest Products Journal 50(7–8): 75–87.
  • Hill CAS. 2006. Wood modification: chemical, thermal, and other processes. Chichester: John Wiley and Sons.
  • IAWA (International Association of Wood Anatomists). 1964. Multilingual glossary of terms used in wood anatomy. Winterthur: Verlagsanstalt Buchdruckerei Konkordia.
  • Ichwandi I, Shinohara T, Chen B. 2009. Development of Teak Wood Production and Marketing in CepuForest District, Central Java, Indonesia. The Science Bulletin of the Faculty of Agriculture, University of the Ryukyus 56: 23–31.
  • IUFRO (International Union of Forest Research Organizations). 2017. The Global Teak Study: Analysis, Evaluation and Future Potential of Teak Resources. Vienna: IUFRO World Series.
  • Jang ES, Kang CW. 2022. Porosity analysis of three types of balsa (Ochroma pyramidale) wood depending on density. Journal of Wood Science 68(31): 1–6. https://doi.org/10.1186/s10086-022-02037-2.
  • KEMENPERIN (Kementerian Perindustrian Republik Indonesia). 2020. Rencana strategis industry hasil hutan dan perkebunan tahun 2020–2024. Jakarta: Direktorat Jenderal Industri Agro.
  • KLHK (Kementerian Lingkungan Hidup dan Kehutanan). 2015. Statistik Kementerian Lingkungan Hidup dan Kehutanan Tahun 2015. Jakarta, Indonesia: KLHK.
  • Koubaa A, Isabel N, Zhang SY, Beaulieu J, Bousquet J. 2005. Transition from juvenile to mature wood in black spruce (Picea mariana (Mill.) B.S.P.). Wood Fiber and Science 37(3): 445–455.
  • L’Hostis C, Thévenon MF, Fredon E, Gérardin P. 2017. Improvement of beech wood properties by in situ formation of polyesters of citric and tartaric acid in combination with glycerol. Hozforschung 72(4): 291–299. https://doi.org/10.1515/hf-2017-0081.
  • Listyanto T, Rofii MN, Ando K, Hattori N. 2015. Dimensional stability and characteristic of modified young teak (Tectona grandis L.f.) wood with PEG-1000. Wood Research Journal 6(1): 14–20. https://doi.org/10.51850/wrj.2015.6.1.14-20.
  • Lopes JdO, Garcia RA, Souza NDd. 2018. Infrared spectroscopy of the surface of thermally-modified teak juvenile wood. Maderas Ciencia y Technologia 20(4): 737–746. https://doi.org/10.4067/S0718-221X2018005041901.
  • Lukmandaru G, Takahashi K. 2009. Radial distribution of quinones in plantation teak (Tectona grandis L.f.). Annals of Forest Science 66(6): 605p1–605p9. https://doi.org/10.1051/forest/2009051.
  • Martawijaya A, Kartasujana I, Kadir K, Prawira SA. 2005. Indonesian wood atlas. Part I (In Indonesian). Bogor: Departemen Kehutanan.
  • Martha R, Mubarok M, Batubara I, Rahayu IS, Setiono L, Darmawan W, Akong FO, George B, Gerardin C, Gerardin P. 2021. Effect of furfurylation treatment on technological properties of short rotation teak wood. Journal of Materials Research and Technology 12(4): 1689–1699. https://doi.org/10.1016/j.jmrt.2021.03.092.
  • Merrylin J, Kannah RY, Banu JR, Yeom IT. 2020. Food waste to valuable resources: production of organic acids and enzymes/biocatalysts from food waste pp 119–141. Cambridge MA: Academic Press. https://doi.org/10.1016/B978-0-12-818353-3.00006-7.
  • Moya R, Salas C, Berrocal A, Valverde JC. 2015. Evaluation of chemical compositions, air-dry, preservation and workability of eight fastgrowing plantation species in Costa Rica. Madera y Bosques 21: 31–47. https://doi.org/10.21829/myb.2015.210424.
  • Nghiem NP, Kleff S, Schwegmann S. 2017. Succinic acid: Technology development and commercialization. Fermentation 3(2): 1–14. https://doi.org/10.3390/fermentation3020026.
  • Nur IFA, Zaidon A, Rabia’tol AMA, Bakar ES, Paridah MT, Mohd HS, Anwar UMK. 2011. Enhancing the properties of low-density hardwood Dyera costulata through impregnation with phenolic resin admixed with formaldehyde scavenger. Journal of Applied Science 11 (20): 3474–3481. https://doi.org/10.3923/jas.2011.3474.3481.
  • Pandey KK, Pitman AJ. 2003. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration and Biodegradation 52(3): 151–160. https://doi.org/10.1016/S0964-8305(03)00052-0.
  • Poulin J, Helwig K. 2014. Inside amber: the structural role of succinic acid in class la and class ld resinite. Analytical Chemistry 86(15):7428–7435. https://doi.org/10.1021/ac501073k.
  • Pourrajabian A, Dehghan M, Javed A, Wood D. 2019. Choosing an appropriate timber for small wind turbine blade: A comparative study. Renewable and Sustainable Energy Reviews 100: 1–8. https://doi.org/10.1016/j.rser.2018.10.010.
  • Putro GS, Marsoem SN, Sulistyo J, Hardiwinoto S. 2020. The growth of three teak (Tectona grandis) clones and its effect on wood properties. Biodiversitas 21(6): 2814–2821. https://doi.org/10.13057/biodiv/d210658.
  • Purba TP, Zaidon A, Bakar ES, Paridah MT. 2014. Effect of processing factors and polymer retention on the performance of phenolic treated wood. Journal of Tropical Forest Science 26(3): 320–330.
  • Qiu H, Liu R, Long L. 2019. Analysis of chemical composition of extractives by acetone and the chromatic aberration of teak (Tectona grandis L.f.) from China. Molecules 24(10): 1989–1999. https://doi.org/10.3390/molecules24101989.
  • Riantin N V, Wahyudi I, Priadi T. 2020. Anatomical structure and physical properties of the 13 years old solomon-clone teakwood planted in Bogor, Indonesia. IOP Conference Series: Materials Science and Engineering 935(1): 012040. doi: 10.1088/1757-899X/935/1/012040
  • Richter HG, Leithoff H, Sonntag U. 2003. Characterisation and extension of juvenile wood in plantation-grown teak (Tectona grandis L.f.) from Ghana. Proceedings of the International Conference on Quality Timber Products of Teak from Sustainable Forest Management; 2003 December 2-5; Peechi, India. KFRI and ITTO. pp 266–272.
  • Rizanti DE, Darmawan W, George B, Merlin A, Dumarcay S, Chapuis H, Gérardin C, Gelhaye E, Raharivelomanana P, Sari RK, Syafii W, Mohamed R, Gérardin P. 2018. Comparison of teak wood properties according to forest management: short versus loh rotation. Annals of Forest Science 75(2): 39–51. https://doi.org/10.1007/s13595-018-0716-8.
  • Rosu D, Teaca CA, Bodirlau R, Rosu L. 2010. FTIR and color change of the modified wood as a result of artificial irradiation. Journal of Photochemistry and Photobiology B: Biology 99(3): 144–149. https://doi.org/10.1016/j.jphotobiol.2010.03.010.
  • Rowell RM, Ellis WD. 1978. Determination of dimensional stabilization wood using the water soak method. Wood and Fiber 10(2):104–111.
  • Rowell RM, Young RL. 1981. Dimensional stabilization of wood in use FPL0243. Madison WI: Forest Products Laboratory.
  • Rulliaty S, Lempang M. 2004. Anatomical characteristics and physical properties of teakwood from Muna and Kendari (In Indonesian; abstract in English). Journal of Forest Products Research 22(4): 231–237. https://doi.org/10.20886/jphh.2004.22.4.231-317.
  • Savero AM, Wahyudi I, Rahayu IS, Yunianti AD, Ishiguri F. 2020. Investigating the anatomical and physical-mechanical properties of the 8-year-old superior teakwood planted in Muna Island, Indonesia. Journal of Korean Wood Science and Technology 48(5): 618–630. https://doi.org/10.5658/WOOD.2020.48.5.618.
  • Sørensen BF, Holmes JW, Brøndsted P, Branner K. 2010. Blade materials, testing methods, and structural design. Southampton: WIT Press.
  • Sutiawan J, Hermawan D, Massijaya MY, Kusumah SS, Lubis MAR, Marlina R, Purnomo D, Sulastiningsih M. 2021. Influence of different hot-pressing conditions on the performance of eco-friendly jabon plywood bonded with citric acid adhesive. Wood Material Science and Engineering 17(6): 400–409. https://doi.org/10.1080/17480272.2021.1884898.
  • Taylor AM, Gartner BL, Morrell JJ. 2002. Heartwood formation and natural durability: a review. Wood Fiber and Science 34(4): 587–611.
  • Usta I. 2004. The effect of moisture content and wood density on the preservative uptake of Caucasian fir (Abies nordmanniana (Link.) Spach.) treated with CCA. Turk Tarim ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry 28(1): 1–7.
  • Wahyudi I, Priadi T, Rahayu IS. 2014. Characteristics and basic properties of the 4- and 5- year-old faster-grown teakwoods from West Java Province (In Indonesian; abstract in English). Indonesian Journal of Agricultural Sciences 19(1): 50–56.
  • Wan H, Kim MG. 2006. Impregnation of southern pine wood and strands with low molecular weight phenol-formaldehyde resins for stabilization of oriented standboards. Wood Fiber and Science 38(2): 314–324.
  • Wang JZ, De Groot R. 1996. Treatability and durability of heartwood. Madison WI, United States: Forest Products Laboratory.
  • Wen MY, Kang CW, Park HJ. 2014. Impregnation and mechanical properties of three softwoods treated with a new fire retardant chemical. Journal of Wood Science 60(5): 367–375. https://doi.org/10.1007/s10086-014-1408-0.
  • Zhao Y, Zhao X, Iida I, Guo J. 2019. Studies on pre-treatment by compression for wood impregnation II: the impregnation of wood compressed at different moisture content conditions. Journal of Wood Science 65(28): 1–6. https://doi.org/10.1186/s10086-019-1808-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.