22
Views
6
CrossRef citations to date
0
Altmetric
Original Article

Neurochemical Basis of Auditory Fatigue: A New Hypothesis

&
Pages 353-362 | Published online: 08 Jul 2009

References

  • Spoendlin H. Submikroskopische Veränderungen am Cortischen Organ der Meerschweinchens nach akustischer Belastung. Pract Oto-Rhino-Laryngol (Basel) 1958; 20: 197–214
  • Beagley HA. Acoustic trauma in the guinea pig. Acta Otolaryngol (Stockh) 1965; 60: 479–95
  • Lim D J, Melnick W. Acoustic damage of the cochlea. Arch Otolaryngol 1971; 94: 294–305
  • Fex J, Altschuler RA. Enkephalin-like immunoreactivity of olivocochlear fibers in the cochlea of the guinea-pig and cat. Proc Natl Acad Sci USA 1981; 78: 1255–9
  • Ylikoski J, Tervo T, Tervo K, Eranko L, Cuello AC. Substance P-like immunoreactivity in the inner ear structures of the rabbit, P Skrabanek, D Powell, P. Substance, Dublin 1983
  • Lim DJ. Fine morphology of the tectorial membrane: Its relationship to the organ of Corti. Arch Otolaryngol 1972; 96: 199–215
  • Hoshino T. Attachment of the inner sensory hairs to the tectorial membrane. A scanning electron microscopic study. ORL 1976; 38: 11–18
  • Dunn RA. Receptor synapses without synaptic ribbons in the cochlea of the cat. Proc 5th Ann Meet Neurosci Soc. New York 1975; 28–38
  • Duvall AJ, III, Sutherland CR. Cochlear transport of horseradish peroxidase. Ann Otol Rhinol Laryngol 1972; 81: 705–13
  • Nadol JB. Intercellular fluid pathways in the organ of Corti of cat and man. Ann Otol Rhinol Laryngol 1979; 88: 2–11
  • Spoendlin H. Innervation densities of the cochlea. Acta Otolaryngol (Stockh) 1972; 73: 235–48
  • Spoendlin H. Degeneration behaviour of the cochlear nerve. Arch Klin Exp Ohr Nas Kehlk-Heilkd 1971; 200: 275–91
  • Morrison D, Schindler R A, Wersäll J. A quantitative analysis of the afferent innervation of the organ of Corti in guinea pig. Acta Otolaryngol (Stockh) 1975; 79: 11–23
  • Spoendlin H. Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol (Stockh) 1969; 67: 239–54
  • Kimura R. Differences in innervation of cochlear inner and outer cells. ARD Abstracts., DJ Lim. 1978
  • Spoendlin H. The innervation of the outer hair cell system. Am J Otol 1982; 3: 274–78
  • Rasmussen GL. Further observations of the efferent cochlear bundle. J Comp Neurol 1953; 99: 61
  • Warr WB. Efferent components of the auditory system. Ann Otol Rhinol Laryngol 1980; 74: 114–20, Suppl.
  • Engström H, Ades H W, Andersson A. Structural pattern of the organ of Corti. Almqvist & Wiksell, Stockholm 1966
  • Smith C A, Sjöstrand FS. Structure of the nerve endings on the external hair cells of the guinea pig cochlea as studied by serial sections. J Ultrastruct Res 1961; 5: 523–56
  • Gulley R L, Reese TS. Freeze-fracture studies on the synapses in the organ of Corti. J Comp Neurol 1977; 171: 517–44
  • Hilding D, Wersäll J. Cholinesterase and its relation to the nerve endings in the inner ear. Acta Otolaryngol (Stockh) 1962; 55: 205–217
  • Smith CA. Innervation pattern of the cochlea. The inner hair cell. Ann Otol Rhinol Laryngol 1961; 70: 504–28
  • Dallos P. The auditory periphery. Academic Press, New York 1973; 366–90
  • Geisler C D, Rhode W S, Kennedy DT. Responses to tonal stimuli of single auditory fibers and their relationship to basilar membrane motion in the squirrel monkey. J Neurophysiol 1974; 37: 1156–1172
  • Evans E F, Wilson JP. Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science 1975; 190: 1218–19
  • McLynn P A, Sayers BA. Cochlear innervation, signal processing and their relation to auditory time-intensity effects. J Acoust Soc Am 1970; 47: 525–32
  • Evans E F, Wilson JP. Frequency selectivity of the cochlea. Basic mechanisms in hearing, A Möller. Academic Press, New York 1973; 519–32
  • Strelioff D, Sitko S T, Honrubia V. Role of inner and outer hair cells in neural excitation. Trans Am Acad Ophthal Otolaryngol ORL 1976; 82: 322–27
  • Manley GA. Cochlear frequency sharpening—a new synthesis. Acta Otolaryngol (Stockh) 1978; 85: 167–76
  • Brownell WE. Cochlear transduction: an integrative model and review. Hear Res 1982; 6: 335–60
  • Katz B, Miledi R. Tetrodotoxin-resistant electric activity in presynaptic terminals. J Physiol (London) 1969; 203: 459–87
  • Hudspeth A J, Corey DP. Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 1977; 74: 2407–11
  • Desmedt IE. Auditory evoked potentials from cochlea to cortex as influenced by activation of the efferent olivocochlear bundle. J Acoust Soc Amer 1962; 34: 1478–96
  • Fex J. Auditory activity in centrifugal and centripetal cochlear fibers in cat. Acta Physiol Scand 1962; 55: 5–68, Suppl. 189
  • Wiederhold M L, Kiang N YS. Effects of the electrical stimulation of the crossed olivocochlear bundle on single auditory nerve fibers in the cat. J Acoust Soc Am 1970; 48/4(II)950–65
  • Leibbrandt CC. The significance of the olivo-cochlear bundle for the adaptation mechanism of the inner ear. Acta Otolaryngol (Stockh) 1965; 59: 124–32
  • Johnstone BM. General discussion. Hearing mechanisms in vertebrates, AVS de Renck, J Knight. Churchill, London 1968; 299
  • Davis H. Contribution to discussion. Hearing mechanisms in vertebrates, AVS de Renck, J Knight. Churchill, London 1968; 119: 305
  • Trachiotis C., Elliott DN. Behavioral investigation of some possible effects of sectioning the crossed olivo-cochlear bundle. J Acoust Soc Am 1970; 47: 592–6
  • Fex J. Neural excitatory processes of the inner ear. Handbook of sensory physiology., WD. Keidel, WD. Neff. Springer-Verlag, Berlin 1974; Vol. V/I.: 586–646
  • Klinke R. Neurotransmitters in the cochlea and cochlear nucleus. Acta Otolaryngol (Stockh) 1981; 91: 541–54
  • Jasser A, Guth PS. The synthesis of acetylcholine by the olivocochlear bundle. J Neurochem 1973; 20: 45–54
  • Flock A, Lam D MK. Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature 1974; 249: 142–4
  • Hökfelt T, Johansson D, Ljungdahl Å, et al. Peptidergic neurones. Nature 1980; 284: 515–21
  • Edwardson J A, McDermott JR. Neurochemical pathology of brain peptides. British Med Bull 1982; 38: 259–64
  • Hökfelt T, Kellerth J P, Nilsson G, Pernow Substance B. P. Localization in the central nervous system and in primary sensory neurons. Science 1975; 190: 884–90
  • Cuello AC. Enkephalin and substance P containing neurones in the trigeminal and extrapyramidal systems. Adv Biochem Psychopharmacol 1978; 18: 111–23
  • Lundberg J M, Hökfelt T, Nilsson G. Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol Scand 1978; 104: 499–501
  • Ylikoski J, Eränkö L, Päivärinta H. Substance P-like immunoreactivity in the rabbit inner ear. J Laryngol Otol 1984; 98: 759–765
  • Ylikoski J, Päivärinta H, Eränkö O, Mrena I, Lehtosalo J. Is substance P the neurotransmitter in the vestibular end organs?. Acta Otolaryngol (Stockh) 1984; 97: 523–8
  • Lehtosalo J, Ylikoski J, Eranko L, Panula P. Enkephalin-like immunoreactivity in the inner ear of the rat and guinea pig. Hear Res 1984, (in press)
  • Terayama Y, Yamamoto K, Sakamoto T. The efferent olivo-cochlear bundle in the guinea pig cochlea. Ann Otol Rhinol Laryngol 1969; 78: 1254–68
  • Spoendlin H. The innervation of the cochlear receptor. Basic mechanisms of hearing, AR Möller. Academic Press, New York 1973; 185–230
  • Iurato S, Smith C A, Eldredge DH, et al. Distribution of the crossed olivocochlear bundle in the chinchilla's cochlea. J Comp Neurol 1978; 182: 57–76
  • Ylikoski J. Neuropeptide-like intraneuronal profiles in the vestibular end organs. J Otol Laryngol 1984; 98: 693–700
  • Eybalin M, Cupo A A, Pujol R. Met-enkephalin characterization in the cochlea: High-performance liquid chromatography and immunoelectron microscopy. Brain Res 1984; 305: 313–322
  • Mudge A W, Leeman S E, Fischbach GD. Enkephalin inhinits release of substance Pfrom sensory neurons in culture and decreased action potential duration. Proc Natl Acad Sci USA 1979; 76: 526–30
  • Jan L Y, Jan Y N, Brownfield MS. Peptidergic transmitters in synaptic boutons of sympathetic ganglia. Nature 1980; 288: 380–2
  • Iversen LL. The uptake and storage of noradrenaline in sympathetic nerves. Cambridge University Press. 1967
  • Gainer H, Peng Loh Y, Sarne Y. Peptides in neurobiology, H Gainer. Plenum, New York 1977; 183–219
  • Bloom FE. Central regulation of the endocrine system, K Fuxe, T Hökfelt, R Luft. Plenum, New York 1978; 173–7
  • Lubinska L. On axoplasmic flow. Int Rev Neurobiol 1975; 17: 241–96
  • Davies WE. The absence of substance P from guinea pig auditory structures. Arch Otorhinolaryngol 1982; 234: 135–7
  • Cuenod M, Boesch J, Marko P, et al. Contributions of axoplasmic transport to synaptic structures and functions. Int J Neurosci 1972; 4: 77–87
  • Droz B, Koenig HL. Dyamic condition of protein in axons and axon terminals. Acta Neuropathol (Berl) 1971; 5: 109–18, Suppl.
  • Keen P, Harmar A J, Spears F, Winter E. Biosynthesis axonal transport and turnover of neuronal substance P. In: Substance P in the nervous system. Pitman, London 1982; 145–64
  • Henderson D, Hamernik R P, Hynson K. Hearing loss from simulated work-week exposure to impulse noise. J Acoust Soc Am 1978; 65(5)1231–7
  • Stephenson M R, Nixon C W, Johnson DL. Identification of the minimum noise level capable of producing an asymptotic temporary threshold shift. Aviat Space Environ Med 1980; 51: 391–6
  • Miller J D, Watson C S, Covell VP. Deafening effects of noise on the cat. Acta Otolaryngol (Stockh) 1963; 176, Suppl.
  • Schuknecht HF. Techniques for study of cochlear function and pathology in experimental animals. Arch Otolaryngol 1953; 58: 377
  • Bredberg G. Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol (Stockh) 1968; 236, Suppl.
  • Ylikoski J. Correlation between pure tone audiogram and cochlear pathology in guinea-pigs intoxicated with ototoxic antibiotics. Acta Otolaryngol (Stockh) 1974; 326: 42–62, Suppl.
  • Dallos P, Harris D. Properties of auditory nerve responses in absence of outer hair cells. J Neurophysiol 1978; 41: 365–83
  • Stockwell C W, Ades H W, Engström H. Patterns of hair cell damage after intense auditory stimulation. Ann Otol Rhinol Laryngol 1969; 78: 1144–68
  • Kohonen A. Effect of some ototoxic drugs upon the pattern and innervation of cochlear sensory cells in guinea pig. Acta Otolaryngol (Stockh) 1965; 208, Suppl.
  • Ylikoski J. Guinea-pig hair cell pathology from ototoxic antibiotics. Acta Otolaryngol (Stockh) 1974; 326: 5–22, Suppl.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.