30
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Comparative Physiology of Acoustic and Allied Central Analyzers

Pages 13-21 | Published online: 08 Jul 2009

References

  • Capranica R R., Moffat A J M. Selectivity of the peripheral auditory system of spadefoot toads (Scaphiopus couchi) for sounds of biological significance. J Comp Physiol 1975; 100: 231–49
  • Mudry K M., Capranica R R. Correlation between auditory evoked responses in the thalamus and species‐specific call characteristics. I. Rana catesbeiana (Anura:Ranidae). J Comp Physiol A 1987; 160: 477–89
  • Mudry K M., Capranica R R. Correlation between auditory thalamic area evoked responses and speciesspecific call characteristics. II. H. Hyla cinerea (Anura:Hylidae). J Comp Physiol A 1987; 161: 407–16
  • Magoun H W. The waking brain. Charles C. Thomas, Springfield, IL 1958
  • Hobson J A., Brazier M A B. The reticular formation revisited: specifying dunction for a nonspecific system. Raven Press, New York 1980
  • Vanderwolf C H., Robinson T E. Reticulo‐cortical activity and behavior: a critique of the arousal theory and a new synthesis. Behav Brain Sci 1981; 4: 459–14
  • Laming P R., Bullock T H. Changes in early acousticevoked potentials by mildly arousing priming stimuli in carp (Cyprinus carpio). Comp Biochem Physiol A 1991; 99A: 567–75
  • Laming P R., Bullock T H., McClune M C. Sustained potential shifts and changes in acoustic evoked potentials after presentation of a non‐acoustic priming stimulus to carp (Cyprinus carpio). Comp Biochem Physiol A 1991; 100A: 95–104
  • Laming P R., Bullock T H., McClune M C. Changes in EEG power, acoustic evoked potentials and heart rate after mildly arousing non‐acoustic priming stimuli in carp (Cyprinus carpio). Comp Biochem Physiol A 1991; 100A: 81–93
  • Makeig S, Galambos R, Stapells D R. Minute rhythms in the steady‐state responses to auditory, visual and tactile stimuli. Electroencephalogr Clin Neurophysiol 1985; 61: S66
  • Chelidze L R. Neuronal mechanisms of the orienting reflex, E N. Sokolov, O S. Vinogradova. Lawrence Erlbaum Associates, Hillsdale, NJ 1975; 52–62
  • Hillyard S A., Picton T W. Event‐related brain potentials and selective information processing in man. Cognitive components in cerebral event‐related potentials and selective attention, J E. Desmedt. Karger, Basel 1979; 1–52
  • Bullock T H., Hofmann M H., Nahm F K., New J G., Prechtl J C. Event‐related potentials in the retina and optic tectum of fish. J Neurophysiol 1990; 64: 903–14
  • Prechtl J C., Bullock T H. Event‐related potentials to omitted visual stimuli in a reptile. Electroencephalogr Clin Neurophysiol 1994; 91: 54–66
  • Karamürsel S, Bullock T H. Dynamics of event‐related potentials to trains of light and dark flashes: responses to missing and extra stimuli in elasmobranch fish. Electroencephalogr Clin Neurophysiol 1994; 90: 461–71
  • Bullock T H., Karamürsel S, Achimowicz J Z., McClune M C., Basar‐Eroglu C. Dynamic properties of human visual evoked and omitted stimulus potentials. Electroencephalogr Clin Neurophysiol 1994; 91: 42–53
  • Bullock T H., Karamürsel S, Hofmann M H. Interval‐specific event related potentials to omitted stimuli in the electrosensory pathway in elasmobranchs: an elementary form of expectation. J Comp Physiol A 1993; 172: 501–10
  • Bullock T H. Organization of the giant nerve fiber system in Neanthes virens. Biol Bull 1945; 89: 185–6
  • Bullock T H. Alteration of frequency of pacemaker nerve cells by imposed direct current. Anat Rec 1942; 84: 18–9
  • Bullock T H. A preparation for the physiological study of the unit synapse. Nature 1946; 158: 555–6
  • Bullock T H., Karamürsel S, Hofmann M H. Apparent expectation in the electrosensory centers of rays. J Comp Physiol A 1993; 173: 749
  • Bullock T H., McClune M C. Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencephalogr Clin Neurophysiol 1989; 73: 479–98
  • Bullock T H., McClune M C., Achimowicz J Z., IraguiMadoz V J., Duckrow R B., Spencer S S. EEG coherence has structure in the millimeter domain: subdural and hippocampal recordings from epileptic patients. Electroencephalogr Clin Neurophysiol 1995; 95: 161–77
  • Bullock T H., McClune M C., Achimowicz J Z., Iragui‐Madoz V J., Duckrow R B., Spencer S S. Temporal fluctuations in coherence of brain waves. Proc Natl Acad Sci USA 1995; 92: 11568–72
  • Ning T K., Bronzino J D. Bispectral analysis of the rat EEG during various vigilance states. IEEE Trans Biomed Eng 1989; 36: 497–9
  • Sherman D L. Novel Techniques for the detection and estimation of three‐wave coupling with application to human brain waves. Ph.D. Thesis, Purdue University. 1993
  • Achimowicz J Z., Bullock T H. Nonlinear properties of local field potentials in brain: implications for biological neural networks modelling. Proc Ann Res Symp, INC, University of California, San Diego 1993; 3: 29–49
  • Bullock T H., Achimowicz J Z., Duckrow R B., et al. Bicoherence of intracranial EEG in sleep, wakefulness and seizures. EEG Clin Neurophysiol 1997, In press
  • Bullock T H., Achimowicz J Z. A comparative survey of oscillatory brain activity, especially gamma‐band rhythms. Oscillatory event related brain dynamics, C Pantev, T Elbert, B Lütkenhöner. Plenum Press, New York 1994; 11–26
  • Eckhorn R, Bauer R, Jordan W, et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 1988; 60: 121–30
  • Eckhorn R, Reitböck H J., Arndt M, Dicke P. Feature linking via synchronization among distributed assemblies: simulations of results from cad visual cortex. Neural Computation 1990; 2: 293–307
  • Gray C M., Singer W. Stimulus‐dependent neuronal oscillations in the cat visual cortex area 17. Neuroscience 1987; 22: 1301P, Suppl
  • Gray C M., Singer W. Stimulus specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc Neurosci Abstr 1987, #404.3
  • Gray C M., König P, Engel A K., Singer W. Oscillatory responses in cat visual cortex exhibit inter‐columnar synchronization which reflects global stimulus properties. Nature (Lond) 1989; 338: 334–7
  • Bacar E, Bacar‐Eroglu C, Röschke J, Schürmann M. Chaotic EEG dynamics, Alpha and Gamma rhythms related to brain function. Basic mechanisms of the EEG, S Zschocke, E ‐J Speckmann. Birkhäuser, Boston 1993; 73–95
  • Gray C M. Rhythmic activity in neuronal systems: insights into integrative function. Lectures in complex systems (SFI Studies in the Sciences of Complexity, Lect. Vol. V), L Nadel, D Stein. Addison‐Wesley. 1993; 89–161
  • Bullock T H. Introduction to induced rhythms: a widespread, heterogeneous class of oscillations. Induced rhythms in the brain, E Başar, T H. Bullock. Birkhäuser, Boston 1992; 1–26
  • Lopes da Suva F H., Vos J E., Mooibroek J, van Rotterdam A. Relative contributions of intracortical and thalamo‐cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalogr Clin Neurophysiol 1980; 50: 449–56
  • Strumwasser F. A short history of the second messenger concept in neurons and lessons from long lasting changes in two neuronal systems producing afterdis‐charge and circadian oscillations. J Physiol (Paris) 1988; 83: 246–54
  • Leresche N, Jassik‐Gerschenfeld D, Haby M, Soltesz I, Crunelli V. Pacemaker‐like and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett 1990; 113: 72–7
  • Marder E, Abbott L F., Kepler T B., Hooper S L. Modification of oscillator function by electrical coupling to nonoscillatory neurons. Induced rhythms in the brain, E Basar, T H. Bullock. Birkhäuser, Boston 1992; 287–96
  • Steriade M, CurróDossi R, Contreras D. Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (approximately 40 HZ) spike‐bursts at approximately 1000 HZ during waking and rapid eye movement sleep. Neuroscience 1993; 56: 1–9
  • Garcia‐Muñoz A, Barrio L C., Buño W. Membrane potential oscillations in CA1 hippocampal pyramidal neurons in vitro: intrinsic rhythms and fluctuations entrained by sinusoidal injected current. Exp Brain Res 1993; 97: 325–33
  • Echteler S M. Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol 1985; 156: 267–80
  • Bleckmann H, Bullock T H. Central nervous physiology of the lateral line, with special reference to cartilaginous fishes. The mechanosensory lateral line, S Coombs, P Görner, H Münz. Springer‐Verlag, New York 1989; 387–408
  • Bleckmann H, Weiss O, Bullock T H. Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 1989; 164: 459–74
  • Prechtl J C. Visual motion induces synchronous oscillations in turtle visual cortex. Proc Natl Acad Sci USA 1994; 91: 12467–71
  • Prechtl J C., Bullock T H. Structure and propagation of cortical oscillations linked to visual behaviors in the turtle. Proc. 2nd Joint Symposium on Neural Computation, University of California, San Diego 1995; 5(105)114–00000
  • Loewenstein W R. Modulation of cutaneous mechanoreceptors by sympathetic stimulation. J Physiol (Lond) 1956; 132: 40–60
  • Chernetski K E. Sympathetic enhancement of peripheral sensory input in the frog. J Neurophysiol 1964; 27: 493–515
  • Sharma K N., Jacobs H L., Gopal V, Dua‐Sharma S. Vago‐sympathetic modulation of gastric mechanoreceptors: effect of distention and nutritional state. J Neural Transm 1972; 33: 113–54
  • Dreher B, Fukada Y, Rodieck R W. Identification, classification and anatomical segregation of cells with X‐like and Y‐like properties in the lateral geniculate nucleus of old‐world primates. J Physiol (Lond) 1976; 258: 433–52
  • Liberman M C. Single‐neuron labeling in the cat auditory nerve. Science 1982; 216: 1239–41
  • Liberman M C., Oliver M E. Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 1984; 223: 163–76
  • Schneider G E. Two visual systems. Science 1969; 163: 895–902
  • Bullock T H., Ridgway S H. Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds. J Neurobiol 1972; 3: 79–99
  • Bullock T H., Ridgway S H. Neurophysiological findings relevant to echolocation in marine mammals. Animal orientation and navigation, S R. Galler, K Schmidt‐Koenig, G J. Jacobs, R E. Belleville. NASA, U.S. Goverment Printing Office, Washington, DC 1972; 373–95
  • Suga N. Philosophy and stimulus design for neuroethology of complex‐sound processing. Philos Trans R Soc Lond B 1992; 336: 423–8
  • Winter P, Funkenstein H H. The effect of species‐specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey. (Saimiri sciureus). Exp Brain Res 1973; 18: 489–504
  • Margoliash D. Acoustic parameters underlying the responses of song‐specific neurons in the white‐crowned sparrow. J Neurosci 1983; 3: 1039–57
  • Margoliash D. Preference for autogenous song by auditory neurons in a song system nucleus of the whitecrowned sparrow. J Neurosci 1986; 6: 1643–61
  • Benson P J., Perrett D I. Visual processing of facial distinctiveness. Perception 1994; 23: 75–93
  • Perrett D I., May K A., Yoshikawa S. Facial shape and judgements of female attractiveness. Nature 1994; 368: 239–42
  • Wilson F A., Rolls E T. Neuronal responses related to the novelty and familarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain. Exp Brain Res 1990; 80: 104–20
  • Rolls E T., Tovee M J., Purcell D G., Stewart A L., Azzopardi P. The responses of neurons in the temporal cortex of primates, and face identification and detection. Exp Brain Res 1994; 101: 473–84
  • Nelsen J M. Agnosia, apraxia, aphasia. Hoeber, New York 1946
  • Sacks O. The man who mistook his wife for a hat. Alfred A. Knopf, New York 1986
  • Damasio A R. Descartes' error. Emotion, reason, and the human brain. G.P. Putnam's Sons, New York 1994
  • von Hoist E St. Paul Uv. Vom Wirkungsgefuge der Triebe. Naturwissenschaften 1960; 47: 409–22
  • Strumwasser F, Cade T J. Behavior elicited by brain stimulation in freely moving vertebrates. Anat Rec 1957; 128: 630–1
  • Wiersma C A G, Waterman T H., Bush B M H. Impulse traffic in the optic nerve of decapod Crustacea. Science 1961; 134: 1435
  • Wiersma C A G. Visual central processing. Invertebrate nervous systems, their significance for mammalian neurophysiology, C AG Wiersma. University of Chicago, Chicago, IL 1967; 269–84
  • Wiersma C A G, Yamaguchi T. Integration of visual stimuli by the crayfish central nervous system. J Exp Biol 1967; 47: 409–31
  • Lettvin J Y., Maturana H R., McCulloch W S., Pitts W H. What the frog's eye tells the frog's brain. Proc Inst Radio Eng 1959; 47: 1940–51
  • Maturana H R., Lettvin J Y., McCulloch W S., Pitts W H. Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 1960; 43: 129–75
  • Lettvin J Y., Maturana H R., Pitts W H., McCulloch W S. Two remarks on the visual system of the frog. Sensory communication, W A. Rosenblith. MIT Press and Wiley, New York 1961
  • Perrett D I., Smith P A J, Mistlin A J., et al. Visual analysis of body movements by neurones in the temporal cortex of the macaque monkey: a preliminary report. Behav Brain Res 1985; 16: 153–70
  • Perrett D I., Harries M H., Bevan R, et al. Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 1989; 146: 87–113
  • Perrett D I., Oram M W., Harries M H., et al. Viewercentred and object‐centred coding of heads in the macaque temporal cortex. Exp Brain Res 1991; 86: 159–73
  • O'Mara S M., Rolls E T., Berthoz A, Kesner R P. Neurons responding to whole‐body motion in the primate hippocampus. J Neurosci 1994; 14: 6511–23
  • Barlow H. The neuron doctrine in perception. The cognitive neurosciences, M S. Gazzaniga. MIT Press, Cambridge, MA 1995; 415–35
  • Galambos R, Myers R E., Sheatz G C. Extralemniscal activation of auditory cortex in cats. Am J Physiol 1961; 200: 23–8
  • Knudsen El, Konishi M. A neural map of auditory space in the owl. Science 1978; 200: 795–7
  • Knudsen El. Auditory experience influences the development of sound localization and space coding in the auditory system. Comparative neurobiology: modes of communication in the nervous system, M J. Cohen, F Strumwasser. Wiley, New York 1985; 93–104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.