177
Views
86
CrossRef citations to date
0
Altmetric
Original Article

Sensitivity of Transient Evoked and Distortion Product Otoacoustic Emissions to the Direct Effects of Noise on the Human Cochlea

, , &
Pages 44-52 | Received 01 Sep 1997, Accepted 18 Apr 1998, Published online: 07 Jul 2009

References

  • Kemp D T. Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 1978; 64: 1386–1391
  • Brownell W E. Observations on a motile response in isolated outer hair cells. Mechanisms of Hearing, W R Webster, L M Aitken. Monash University Press. 1983; 5–10
  • Brownell W E. Microscopic observation of cochlear hair cell motility. Scan Electron Microscopy 1987; 3: 1401–1406
  • Brownell W E, Bader C R, Bertrand D, de Ribaupierve Y. Evoked mechanical responses of isolated cochlear outer hair cells. Science 1985; 227: 194–196
  • Kemp D T, Chum R. Properties of the generator of stimulated acoustic emissions. Hear Res 1980; 2: 213–232
  • Kim D O. Cochlear mechanics: implications of electro-physiological and acoustical observations. Hear Res 1980; 2: 297–317
  • Zwicker E, Scherer A. Correlation between time functions of sound pressure, masking, and OAE suppression. J Acoust Soc Am 1987; 81: 1043–1049
  • Miller J D. Effects of noise on people. J Acoust Soc Am 1974; 56: 729–764
  • Clark W W. Noise exposure from leisure activities: a review. J Acoust Soc Am 1991; 90: 175–181
  • Hamernik R P, Ahroon W A, Hsueh K H. The energy spectrum of an impulse: Its relation to hearing loss. J Acoust Soc Am 1991; 90: 197–208
  • Melnick W. Human temporary threshold shift (TTS) and damage risk. J Acoust Soc Am 1991; 90: 147–154
  • Ward W D. The role of intermittence in PTS. J Acoust Soc Am 1991; 90: 164–169
  • Yost W A. Fundamentals of Hearing: An Introduction. Academic Press, San Diego 1994; 194–209
  • Kemp D T. Physiologically active cochlear micromechanics -one source of tinnitus. Tinnitus, D Lawrenson Evered. Pitman, London 1981
  • Kemp D T. Cochlear echoes: Implications for noise-induced hearing loss. New Perspectives on Noise-induced Hearing Loss, R P Hamernik, D Henderson, R J Salvi. Raven Press, New-York 1982, 189
  • Schmiedt R A. Acoustic distortion products in the ear canal. I. Cubic difference tones: effects of acute noise injury. J Acoust Soc Am 1986; 79: 1481–1490
  • Lonsbury-Martin B L, Martin G K, Probst R, Coats A C. Acoustic distortion products in the rabbit ear canal. I. Basic features and physiological vulnerability. Hear Res 1987; 28: 173–189
  • Martin G K, Lonsbury-Martin B L, Probst R, Scheinin S A, Coats A C. Acoustic distortion products in the rabbit ear canal. II. Sites of origin revealed by suppression contours and pure-tone exposures. Hear Res 1987; 28: 191–208
  • Avan P, Bonfils P. Frequency-specificity of human distortion-product otoacoustic emissions. Audiology 1993; 32: 12–26
  • Probst R, Lonsbury-Martin B L, Martin G K. A review of otoacoustic emission. J Acoust Soc Am 1991; 89: 2027–2067
  • Fabiani M. Evoked otoacoustic emissions in the study of adult sensori-neural hearing loss. Br J Audiol 1993; 27: 131–137
  • Moulin A, Bera J C, Collet L. Distortion product otoacoustic emissions and sensorineural hearing loss. Audiology 1994; 33: 305–326
  • Lonsbury-Martin B L, Martin G K. The clinical utility of distortion-product otoacoustic emissions. Ear Hear 1990; 11: 144–154
  • Subramaniam M, Henderson D, Spongr V. The relationship among distortion-product otoacoustic emissions, evoked potential thresholds, and outer hair cells following interrupted noise exposure. Ear Hear 1994; 15: 299–309
  • Hamernik R P, Ahroon W A, Lei S F. The cubic distortion product otoacoustic emissions from the normal and noise-damaged chinchilla cochlea. J Acoust Soc Am 1996; 100: 1003–1012
  • Sutton L A, Lonsbury-Martin B L, Martin G K, Whitehead M L. Sensitivity of distortion product otoacoustic emissions in humans to tonal overexposure: time course of recovery and effects of lowering L2. Hear Res 1994; 75: 161–174
  • Carhart R, Jerger J F. Preferred method for clinical determination of pure-tone thresholds. J Speech Hear Disord 1959; 24: 330–345
  • Vinck B M, De Vel E, Xu Z M, Van Cauwenberge P B. Distortion product otoacoustic emissions: a normative study. Audiology 1996; 35: 231–245
  • Lonsbury-Martin B L, Harris F P, Stagner B B, Hawkins M D, Martin G K. Distortion product otoacoustic emissions in humans. 1. Basic properties in normally hearing subjects. Ann Otol Rhinol Laryngol 1990; 99: 3–14
  • Stover L, Gorga M P, Neely S T, Montoya D. Toward optimizing the clinical utility of distortion product otoacoustic emission measurements. J Acoust Soc Am 1996; 100: 956–967
  • Kim D O. Functional roles of the inner-and outer-hair cell subsystems in the cochlea and brainstem. Hearing Science, C I Berlin. College-Hill Press, New York 1984
  • Mountain D C. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 1980; 210: 71–72
  • Siegel J H, Kim D O. Efferent neural control of cochlear mechanics?. Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 1982; 6: 171–182
  • Guinan J J. Effect of efferent neural activity on cochlear mechanics. Scand Audiol (Suppl) 1986; 25: 53–62
  • Hotz M A, Probst R, Harris F P, Hauser R. Monitoring the effects of noise exposure using transiently evoked otoacoustic emissions. Acta Otolaryngol (Stockh) 1993; 113: 478–182
  • Kollar A, De Min N, Mathis A, Arnold W. Einfhiss einer kurzfristigen Schallbelastung auf das Verhalten transitorisch evozierter oto-akusticher Emissionen. Otorhinolaryngol Nova 1991; 1: 56–61
  • Liebel J, Delb W, Andes C, Koch A. Measurement of noise effects in a discotheque by means of otoacoustic emissions. Laryngo Rhino Otologie 1996; 75: 259–264
  • Oeken J, Menz D. Changes in DP amplitudes after acute noise impact. Laryngo Rhino Otologie 1996; 75: 265–269
  • Kvaerner K J, Engdahl B, Arnesen A R, Mair I W. Temporary threshold shift and otoacoustic emissions after industrial noise exposure. Scand Audiol 1995; 24: 137–141
  • Fuse T, Aoyagi M, Suzuki Y, Koike Y. Frequency analysis of transiently evoked otoacoustic emissions in sensorineural hearing disturbance. Acta Otolaryngol (Stockh) 1994; 511: 91–94, (Suppl);
  • West P D, Evans E F. Early detection of hearing damage in young listeners resulting from exposure to amplified music. Br J Audiol 1990; 24: 89–103
  • Reshef J, Attias J, Furst M. Characteristics of click-evoked otoacoustic emissions in ears with normal hearing and with noise induced hearing loss. Br J Audiol 1993; 27: 387–395

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.