131
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effect of Cdk5 Antagonist on L-Dopa-Induced Dyskinesias in a Rat Model of Parkinson's Disease

, , , &
Pages 421-427 | Received 05 Dec 2009, Published online: 26 May 2010

REFERENCES

  • Aubert, I., Guigoni, C., Håkansson, K., Li, Q., Dovero, S., Barthe, N., (2005). Increased D1 dopamine receptor signaling in levodopa-induced dyskinesia. Annals of Neurology, 57, 17–26.
  • Bibb, J. A., Che, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature, 410, 376–380.
  • Bibb, J. A., Snyder, G. L., Nishi, A., Yan, Z., Meijer, L., Fienberg, A. A., (1999). Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 402, 669–671.
  • Chergui, K., Svenningsson, P., & Greengard, P. (2004). Cyclin-dependent. kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proceedings of the National Academy of Science, 101(7), 2191–2196.
  • Chen, P. C., & Chen, J. C. (2005). Enhanced Cdk5 activity and p35 translocation in the ventral striatum of acute and chronic methamphetamine-treated rats. Neuropsychopharmacology, 30, 538–549.
  • Colosimo, C., Fabbrini, G., & Berardelli, A. (2006). Drug Insight: New drugs in development for Parkinson's disease. Nature Clinical Practice Neurology, 2(11), 600–610.
  • Damier, P. (2009). Drug-induced dyskinesias. Current Opinion in Neurology, 22(4), 394–399.
  • Dekundy, A., Lundblad, M., Danysz, W., & Cenci, M. A. (2007). Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: Further validation of the rat dyskinesia model. Behavioural Brain Research, 179(1), 76–89.
  • Greengard, P., Allen, P. B., & Nairn, A. C. (1999). Beyond the dopamine receptor: The DARPP-32/protein phosphatase-1 cascade. Neuron, 23, 435–447.
  • Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., Jr., (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250, 1429–1432.
  • Guan, Q., Zhan, Q., He, Y., & Tan, L. (2007). Changes in the prodynorphin gene and DARPP-32 state in 6-OHDA-lesioned rats following long-term treatment with l-dopa. Neuroscience Letters, 426(1), 64–68.
  • Kuan, W. L., Lin, R., Tyers, P., & Barker, R. A. (2007). The importance of A9 dopaminergic neurons in mediating the functional benefits of fetal ventral mesencephalon transplants and levodopa-induced dyskinesias. Neurobiology of Disease, 25(3), 594–608.
  • Lee, C. S., Cenci, M. A., Schulzer, M., & Björklund, A. (2000). Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson's disease. Brain, 123, 1365–1379.
  • Levandis, G., Bazzini, E., Armentero, M. T., Nappi, G., & Blandini, F. (2008). Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease. Neurobiology of Disease, 29(1), 161–168.
  • Meurers, B. H., Dziewczapolski, G., Shi, T., Bittner, A., Kamme, F., & Shults, C. W. (2009). Dopamine depletion induces distinct compensatory gene expression changes in DARPP-32 signal transduction cascades of striatonigral and striatopallidal neurons. Journal of Neuroscience, 29(21), 6828–6839.
  • Nishi, A., Bibb, J. A., Snyder, G. L., Higashi, H., Nairn, A. C., & Greengard, P. (2000). Amplification of dopaminergic signaling by a positive feedback loop. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12840–12845.
  • Nutt, J. G. (1990). Levodopa-induced dyskinesia: Review, observations, and speculations. Neurology, 40(2), 340–345.
  • Qin, Z. H., Chen, J., & Weiss, B. (1994). Lesions of mouse striatum induced by 6-hydroxydopamine differentially alter the density, rate of synthesis, and level of gene expression of D1 and D2 dopamine receptors. Journal of Neurochemistry, 62(2), 411–420.
  • Qu, D., Rashidian, J., Mount, M. P., Aleyasin, H., Parsanejad, M., Lira, A., (2007). Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron, 55(1), 37–52
  • Ouimet, C. C., Miller, P. E., Hemmings, H. C. Jr., Walaas, S. I., & Greengard, P. (1984). DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. Journal of Neuroscience, 4(1), 111–124.
  • Papa, S. M., Engber, T. M., Kask, A. M., & Chase, T. N. (1994). Motor uctuations in levodopa treated parkinsonian rats: Relation to lesion extent and treatment duration. Brain Research, 662(1–2), 69–74
  • Paxinos & Watson. (1998). The Rat Brain in Stereotaxic Coordinates.4. San Diego, CA: Academic Press.
  • Picconi, B., Centonze, D., Håkansson, K., Bernardi, G., Greengard, P., Fisone, G., (2003). Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neuroscience, 6, 501–506.
  • Scheggi, S., Rauggi, R., Nanni, G., Tagliamonte, A., & Gambarana, C. (2004). Repeated acetyl-l-carnitine administration increases phospho-Thr34 DARPP-32 levels and antagonizes cocaine-induced increase in Cdk5 and phospho-Thr75 DARPP-32 levels in rat striatum. European Journal of Neuroscience, 19(6), 1609–1620.
  • Smith, P. D., Crocker, S. J., Jackson-Lewis, V., Jordan-Sciutto, K. L., Hayley, S., Mount, M. P., (2003). Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 100, 13650–13655.
  • Smith, P. D., Mount, M. P., Shree, R., Callaghan, S., Slack, R. S., Anisman, H., (2006). Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. Journal of Neuroscience, 26, 440–447.
  • Thomas, J., Wang, J., Takubo, H., Sheng, J., de Jesus, S., & Bankiewicz, K. S. (1994). A 6-OHDA induced selective Parkinsonian rat model: Further biochemical and behavioural characterization. Experimental Neurology, 126(2), 159–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.