252
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Selective Loss and Axonal Sprouting of GABAergic Interneurons in the Sclerotic Hippocampus Induced by LiCl–Pilocarpine

, , , , , , , , & show all
Pages 69-85 | Received 22 Apr 2010, Published online: 13 Dec 2010

REFERENCES

  • Adnan, H. S., & Shirley, A. J. (2005). CA3 axonal sprouting in kainate-induced chronic epilepsy. Brain Research, 1066, 129–146.
  • Andre, V., Marescaux, C., Nehlig, A., & Fritschy, J. M. (2001). Alterations of hippocampal GABAergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus, 11, 452–468.
  • Andrioli, A., Alonso-Nanclares, L., Arellano, J. I., & DeFelipe, J. (2007). Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience, 149, 131–143.
  • Arellano, J. I., Munoz, A., Ballesteros-Yanez, I., Sola, R. G., & DeFilipe, J. (2004). Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain, 127, 45–64.
  • Babb, T. L., Brown, W. J., Pretorius, J., Davenport, C., Lieb, J. P., & Crandall, P. H. (1984). Temporal lobe volumetric cell densities in temporal lobe epilepsy. Epilepsia, 25, 729–740.
  • Babb, T. L., Pretorius, J. K., Kupfer, W. R., & Crandall, P. H. (1989). Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. Journal of Neuroscience, 9, 2562–2574.
  • Bausch, S. B. (2005). Axonal sprouting of GABAergic interneurons in temporal lobe epilepsy. Epilepsy & Behavior, 7, 390–400.
  • Berg, A. T. (2006). Defining intractable epilepsy. Advances in Neurology, 97, 5–10.
  • Bouilleret, V., Ridoux, V., Depaulis, A., Marescaux, C., Nehlig, A., & Le Gal La Salle, G. (1999). Recurrent seizures and hippocampal sclerosis following intrahippocampal kainate injection in adult mice: Electroencephalography, histopathology and synaptic reorganization similar to mesial temporal lobe epilepsy. Neuroscience, 89, 717–729.
  • Buckmaster, P. S., & Dudek, F. E. (1997). Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. Journal of Comparative Neurology, 385, 385–404.
  • Cascino, G. D. (2005). Temporal lobe epilepsy: More then hippocampal pathology. Epilepsy Currents, 5, 187–189.
  • Cavalheiro, E. A., Silva, D. F., Turski, W. A., Calderazzo-Filho, L. S., Bortolotto, Z. A., & Turski, L. (1987). The susceptibility of rats to pilocarpine-induced seizures is age-dependent. Developmental Brain Research, 37, 43–58.
  • Chen, S., Kobayashi, M., Honda, Y., Kakuta, S., Sato, F., & Kishi, K. (2007). Preferential neuron loss in the rat piriform cortex following pilocarpine-induced status epilepticus. Epilepsy Research, 74, 1–18.
  • Clifford, D. B., Olney, J. W., Maniotis, A., Collins, R. C., & Zorumski, C. F. (1987). The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures. Neuroscience, 23, 953–968.
  • Cossart, R., Dinocourt, C., Hirsch, J. C., Merchan-Perez, A., De Felipe, J., Ben-Ari, Y., (2001). Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy. Nature Neuroscience, 4, 52–62.
  • DeLanerolle, N. C., Brines, M. L., & Kim, J. H. (1992). Neurochemical remodeling of the hippocampus in human temporal lobe epilepsy. In J. Engel, Jr., C. Wasterlain, E. A. Cavalheiro, U. Heinemann & G. Avanzini (eds.), Molecular Biology of Epilepsy. Amsterdam: Elsevier, 205–220.
  • Dichter, M. A., & Wilcox, K. S. (1997). Excitatory synaptic transmission. In J. Engel, Jr. and T. A. Pedley (eds.), Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven, 251.
  • Dinocourt, C., Petanjek, Z., Freund, T. F., Ben-Ari, Y., & Esclapez, M. (2003). Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. Journal of Comparative Neurology, 459, 407–425.
  • Doherty, J., & Dingledine, R. (2000). Reduced excitatory drive onto interneurons in the dentate gyrus after status epilepticus. Journal of Neuroscience, 21, 2048–2057.
  • Esclapez, M., & Houser, C. R. (1995). Somatostatin neurons are a subpopulation of GABA neurons in the rat dentate gyrus: Evidence from colocalization of pre-prosomatostatin and glutamate decarboxylase messenger RNAs. Neuroscience, 64, 339–355.
  • Falcomer, M. A. (1974). Mesial temporal (Ammon's horn) sclerosis as a common cause of epilepsy. Aetiology, treatment, and prevention. Lancet, 2, 767–770.
  • Falcomer, M. A., Serafetinides, E. A., & Corsellis, J. A. (1964). Etiology and pathogenesis of temporal lobe epilepsy. Archives of Neurology, 10, 233–248.
  • Franck, J. E., Kunkel, D. D., Baskin, D. G., & Schwartzkroin, P. A. (1988). Inhibition in kainate-lesioned hyperexcitable hippocampi: Physiologic, autoradio-graphic and immunocytochemical observations. Journal of Neuroscience, 8, 1991–2002.
  • Franck, J. E., & Schwartzkroin, P. A. (1985). Do kainate-lesioned hippocampi become epileptogenic? Brain Research, 389, 309–313.
  • Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.
  • Glien, M., Brandt, C., Potschka, H., Voigt, H., Ebert, U., & Löscher, W. (2001). Repeated low-dose treatment of rats with pilocarpine: Low mortality but high proportion of rats developing epilepsy. Epilepsy Research, 46, 111–119.
  • Hellier, J. L., Patrylo, P. R., Dou, P., Nett, M., Rose, G. M., & Dudek, F. E. (1999). Assessment of inhibition and epileptiform activity in the septal dentate gyrus of freely behaving rats during the first week after kainate treatment. Journal of Neuroscience, 19, 10053–10064.
  • Hogan, R. E., Bucholz, R. D., & Joshi, S. (2003). Hippocampal deformation based shape analysis in epilepsy and unilateral mesial temporal sclerosis. Epilepsia, 44, 8002–8061.
  • Jope, R. S., Morrisett, R. A., & Snead, O. C., III, (1986). Characterization of lithium potentiation of pilocarpine-induced status epilepticus in rats. Experimental Neurology, 91, 471–480.
  • Katsumaru, H., Kosaka, T., Heizmann, C. W., & Hama, K. (1988). Immuno-cytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Experimental Brain Research, 72, 347–362.
  • Klitgaard, H., Matagne, A., Vanneste-Goemaere, J., & Margineanu, D. G. (2002). Pilocarpine-induced epileptogenesis in the rat: Impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Research, 51, 93–107.
  • Kobayashi, M., & Buckmaster, P. S. (2003). Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. Journal of Neuroscience, 23, 2440–2452.
  • Kosaka, T., Katsumaru, H., Hama, K., Wu, J. Y., & Heizmann, C. W. (1987). GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Research, 419, 119–130.
  • Lancaster, B., & Wheal, H. V. (1984). Chronic failure of inhibition of the area CA1 area of the hippocampus following kainic acid lesions of the CA3/CA4 area. Brain Research, 295, 317–324.
  • Lemos, T., & Cavalheiro, E. A. (1995). Suppression of pilocarpine-induced status epilepticus and the late development of epilepsy in rats. Experimental Brain Research, 102, 423–428.
  • Li, W. E., & Nagy, J. I. (2000). Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: Evidence for junction regulation by neuronal-glial interactions. Neuroscience, 97, 113–123.
  • Liu, Z., Nagao, T., Desjardins, G. C., Gloor, P., & Avoli, M. (1994). Quantitative evaluation of neuronal loss in the dorsal hippocampus in rats with long-term pilocarpine seizures. Epilepsy Research, 17, 237–247.
  • Longo, B. M., & Mello, L. E. A. M. (1998). Supragranular mossy fiber sprouting is not necessary for spontaneous seizures in the intrahippocampal kainite model of epilepsy in the rat. Epilepsy Research, 32, 172–182.
  • Macdonald, R. L. (1997). Inhibitory synaptic transmission. In J. Engel, Jr. and T. A. Pedley (eds.), Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven, 265–275.
  • Magloczky, Z., & Freund, T. F. (2005). Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends in Neurosciences, 28, 334–340.
  • Magloczky, Z., Wittner, L., Borhegyi, Z., Halasz, P., Vajda, J., Czirjak, S., (2000). Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience, 96, 7–25.
  • Margerison, J. H., & Corsellis, J. A. N. (1966). Epilepsy and the temporal lobes. Brain, 89, 499–530.
  • Park, C., Kang, M., Kang, K., Lee, J., Kim, J., Yoo, J., (2001). Differential changes in neuropeptide Y and nicotinamide adenine dinucleotide phosphate-diaphorase-positive neurons in rat hippocampus after kainic acid-induced seizure. Neuroscience Letters, 298, 49–52.
  • Racine, R. J. (1972). Modification of seizure activity by electrical stimulation II Motor seizure. Electroencephalography and Clinical Neurophysiology, 32, 781–794.
  • Scharfman, H. E. (2007). The neurobiology of epilepsy. Current Neurology and Neuroscience Reports, 7, 348–354.
  • Schwarzer, C., Williamson, J. M., Lothman, E. W., Vezzani, A., & Sperk, G. (1995). Somatostatin, neuropeptide Y, neurokinen B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience, 69, 831–845.
  • Shetty, A. K., Hattiangady, B., & Rao, M. S. (2009). Vulnerability of hippocampal GABA-ergic interneurons to kainate-induced excitotoxic injury during old age. Journal of Cell and Molecular Medicine, 13, 2408–2423.
  • Shetty, A. K., & Turner, D. A. (2001). Glutamic acid decarboxylase-67-positive hippocampal interneurons undergo a permanent reduction in number following kainic acid-induced degeneration of ca3 pyramidal neurons. Experimental Neurology, 169, 276–297.
  • Sloviter, R. S. (1987). Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science, 235, 73–76.
  • Sloviter, R. S. (1991). Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus, 1, 41–66.
  • Sloviter, R. S., Ali-Akbarian, L., Horvath, K. D., & Menkens, K. A. (2001). Substance P receptor expression by inhibitory interneurons of the rat hippocampus: Enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. Journal of Comparative Neurology, 430, 283–305.
  • Sloviter, R. S., & Nilaver, G. (1987). Immunocytochemical localization of GABA-, cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin like immunoreactivity in the area dentata and hippocampus of the rat. Journal of Comparative Neurology, 256, 42–60.
  • Sloviter, R. S., Sollas, A. L., Barbaro, N. M., & Laxer, K. D. (1991). Calcium-binding protein (calbindin-D28K) and parvalbumin immunocytochemistry in the normal and epileptic human hippocampus. Journal of Comparative Neurology, 308, 381–396.
  • Sloviter, R. S., Zappone, C. A., Harvey, B. D., Bumanglag, A. V., Bender, R. A., & Frotscher, M. (2003). “Dormant basket cell” hypothesis revisited: Relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepticus in the rat. Journal of Comparative Neurology, 459, 44–76.
  • Sperk, G., Marksteiner, J., Gruber, B., Bellmann, R., Mahata, M., & Ortler, M. (1992). Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat. Neuroscience, 50, 831–846.
  • Sun, C. S., Mtchedlishvili, Z., Bertram, E. H., Erisir, A., & Kapur, J. (2007). Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. Journal of Comparative Neurology, 500, 876–893.
  • Veliskova, J. (2006). Behavioral characterization of seizures in rats. In A. Pitkanen, P. A. Schwartzkroin & S. L. Moshe (eds.), Models of Seizures and Epilepsy. Burlington, VT: Elsevier Academic Press, 601–611.
  • Vezzani, A., Schwarzer, C. O., & Lothman, E. W. (1996). Functional changes in somatostatin and neuropeptide Y containing neurons in the rat hippocampus in chronic models of fimbic seizures. Epilepsy Research, 26, 267–279.
  • Wittner, L., Eross, L., Szabo, Z., Toth, S., Czirjak, S., Halasz, P., (2002). Synaptic reorganization of calbindin-positive neurons in the human hippocampal CA1 region in temporal lobe epilepsy. Neuroscience, 115, 961–978.
  • Wittner, L., Maglóczky, Z., Borhegyi, Z., Halász, P., Tóth, S., Eross, L., (2001). Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus. Neuroscience, 108, 587–600.
  • Wu, K., & Leung, L. S. (2001). Enhanced but fragile inhibition in the dentate gyrus in vivo in the kainic acid model of temporal lobe epilepsy: A study using current source density analysis. Neuroscience, 104, 379–396.
  • Yang, Z. X., Luan, G. M., Yan, L., & Zhang, Y. (2004). Establishment of temporal epilepsy models and its permanent epilepsy sensitivity. Chinese Medical Journal, 84, 152–155.
  • Zhang, X., Cui, S.-S., Wallace, A. E., Hannesson, D. K., Schmued, L. C., Saucier, D. M., (2002). Relations between brain pathology and temporal lobe epilepsy. Journal of Neuroscience, 22, 6052–6061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.