312
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Role of Glutamine in Neuronal Survival and Death During Brain Ischemia and Hypoglycemia

, , , &
Pages 415-422 | Received 08 Jan 2011, Published online: 17 May 2011

REFERENCES

  • Abdul-Ghani, A. S., Ghneim, H., el-Lati, S., & Saca'an, A. (1989). Changes in the activity of glutamate related enzymes in cerebral cortex, during insulin-induced seizures. International Journal of Neuroscience, 44, 67–74.
  • Aksenov, M. Yu., Aksenova, M. V., Harris, M. E., Hensley, K., Butterfield, D. A., & Carney, J. M. (1995). Enhancement of beta-amyloid peptide A beta(1-40)-mediated neurotoxicity by glutamine synthetase. Journal of Neurochemistry, 65, 1899–1902.
  • Albers, A., Broer, A., Wagner, C. A., Setiawan, I., Lang, P. A., Kranz, (2001). Na+ transport by the neural glutamine transporter ATA1. Pflügers Archiv European Journal of Physiology, 443, 92–101.
  • Albrecht, J., & Norenberg, M. D. (2006). Glutamine: A Trojan horse in ammonia neurotoxicity. Hepatology, 44, 788–794.
  • Albrecht, J., Sonnewald, U., Waagepetersen, H. S., & Schousboe, A. (2007). Glutamine in the central nervous system: Function and dysfunction. Front of Bioscience, 12, 332–343.
  • Albrecht, J., Zielińska, M., & Norenberg, M. D. (2010). Glutamine as a mediator of ammonia neurotoxicity: A critical appraisal. Biochemical Pharmacology, 80, 1303–1308.
  • Amores-Sanchez, M. I., & Medina, M. A. (1999). Glutamine, as a precursor of glutathione, and oxidative stress. Molecular Genetics and Metabolism, 67(2), 100–105.
  • Ashmarin, I. P., Stukalova, P. V., Eshchenko, N. D., Ashapkin, V. V., Osadchaya, L. M., Volsky, G. G. et al. (1999). In I. P. Ashmarin, P. V. Stukalova & N. D. Eshchenko (eds.), Biochemistry of Brain [in Russian]. St. Petersburg, Russia: St. Petersburg University Publishers, Chapter 2, Free amino acids of nervous system, p. 124–159.
  • Benjamin, A. M. (1981). Control of glutaminase activity in rat brain cortex in vitro: Influence of glutamate, phosphate, ammonium, calcium and hydrogen ions. Brain Research, 208, 363– 377.
  • Benveniste, H., Drejer, J., Schousboe, A., & Diemer, N. H. (1984). Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. Journal of Neurochemistry, 43, 1369–1374.
  • Boksha, I. S., Tereshkina, E. B., & Burbaeva, G. S. (2000). Glutamine synthetase and glutamine synthetase-like protein from human brain: Purification and comparative characterization. Journal of Neurochemistry, 75, 2574–2582.
  • Bouvier, M., Szatkowski, M., Amato, A., & Attwell, D. (1992). The glial cell glutamate uptake carrier countertransports pH-changing anions. Nature, 360, 471–474.
  • Burbaeva, G. Sh., Boksha, I. S., Tereshkina, E. B., Savushkina, O. K., Starodubtseva, Lubov’ I., Turishcheva, M. S., (2007). Systemic neurochemical alterations in schizophrenic brain: Glutamate metabolism in focus. Neurochemical Research, 32, 1434–1444.
  • Butcher, S. P., Sandberg, M., Hagberg, H., & Hamberger, A. (1987). Cellular origins of endogenous amino acids released into the extracellular fluid of the rat striatum during severe insulin-induced hypoglycemia. Journal of Neurochemistry, 48, 722–728.
  • Curthoys, N. P., & Watford, M. (1995). Regulation of glutaminase activity and glutamine metabolism. Annual Review of Nutrition, 15, 133–159.
  • Deitmer, J. W., Broer, A., & Broer, S.(2003). Glutamine efflux from astrocytes is mediated by multiple pathways. Journal of Neurochemistry, 87, 127–135.
  • Endres, M., Wang, Z. Q., Namura, S., Waeber, C., & Moskowitz,M. A. (1997). Ischemic brain injury is mediated by the activation of poly (ADP- ribose) polymerase. Journal of Cerebral Blood Flow and Metabolism, 17, 1143–1151.
  • Erecińska, M., Zaleska, M. M., Nelson, D., Nissim, I., & Yudkoff, M. (1990). Neuronal glutamine utilization: Glutamine/glutamate homeostasis in synaptosomes. Journal of Neurochemistry, 54, 2057–2069.
  • Farooqui, A. A., Ong, W.-Yi., & Horrocks, L. A. (2008). Neurochemical Aspects of Excitoxicity. New York: Springer Science and Business Media.
  • Fernandes, S. P., Dringen, R., Lawen, A., & Robinson, S. R. (2010). Neurones express glutamine synthetase when deprived of glutamine or interaction with astrocytes. Journal of Neurochemistry, 114(5), 1527–1536.
  • Fiskum, G., Chandrasekharan, K., Mehrabyan, Z., Krueger, B. K., & Bambrick, L. L. (2000). Differential involvement of the permeability transition in Ca2+-induced alterations to mitochondria within cultured neurons and astrocytes. J Neurochem, 74(Suppl), 95A.
  • Goldberg, M. P., Monyer, H., & Choi, D. W. (1988). Hypoxic neuronal injury in vitro depends on extracellular glutamine. Neuroscience Letters, 94, 52–57.
  • Grivennikova, V. G., Cecchini, G., & Vinogradov, A. D. (2008). Ammonium-dependent hydrogen peroxide production by mitochondria. FEBS Letters, 582, 2719–2724.
  • Gundersen, V., Fonnum, F., Ottersen, O. P., & Storm-Mathisen, J. (2001). Redistribution of neuroactive amino acids in hippocampus and striatum during hypoglycemia: A quantitative immunogold study. Journal of Cerebral Blood Flow and Metabolism, 21, 41–51.
  • Haser, W. G., Shapiro, R. A., & Curthoys, N. P. (1985). Comparison of the phosphate-dependent glutaminase obtained from rat brain and kidney. Biochemical Journal, 229, 399–408.
  • Hertz, L. (2008). Bioenergetics of cerebral ischemia: A cellular perspective. Neuropharmacology, 55, 289–309.
  • Hertz, L., Dringen, R., Schousboe, A., & Robinson, S. R. (1999). Astrocytes: Glutamate producers for neurons. Journal of Neuroscience Research, 57, 417–428.
  • Holownia, A., Chwiecko, M., & Farbiszewski, R. (1994). Accumulation of ammonia and changes in the activity of some ammonia metabolizing enzymes during brain ischemia/reperfusion injury in rats. Materia Medica Polona, 26, 25–27.
  • Honegger, P., Braissant, O., Henry, H., Boulat, O., Bachmann, C., Zurich, M. G., (2002). Alteration of amino acid metabolism in neuronal aggregate cultures exposed to hypoglycaemic conditions. Journal of Neurochemistry, 81, 1141–1151.
  • Hoshi, A., Nakahara, T., Kayama, H., & Yamamoto, T. (2006). Ischemic tolerance in chemical preconditioning: Possible role of astrocytic glutamine synthetase buffering glutamate-mediated neurotoxicity. Journal of Neuroscience Research, 84, 130–141.
  • Huang, R., & Hertz, L. (1994). Effect of anoxia on glutamate formation from glutamine in cultured neurons: Dependence on neuronal subtype. Brain Research, 660, 129–137.
  • Isaev, N. K., Andreeva, N. A., Stel'mashuk, E. V., & Zorov, D. B. (2005). Role of mitochondria in the mechanisms of glutamate toxicity. Biochemistry (Moscow), 70(6), 611–618.
  • Isaev, N. K., Stelmashook, E. V., Plotnikov, E. Y., Khryapenkova, T. G., Lozier, E. R., Doludin, (2008). Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia. Biochemistry (Moscow), 73(11), 1171–1175.
  • Isaev, N. K., Stel'mashuk, E. V., & Zorov, D. B. (2007). Cellular mechanisms of brain hypoglycemia. Biochemistry (Moscow), 72(5), 471–478.
  • Jang, H. J., Kwak, J. H., Cho, E. Y., We, Y. M., Lee, Y. H., Kim, S. C., (2008). Glutamine induces heat-shock protein-70 and glutathione expression and attenuates ischemic damage in rat islets. Transplantation Proceedings, 4, 2581–2584.
  • Jayakumar, A. R., Rama Rao, K. V., & Norenberg, M. D. (2004). Glutamine-induced free radical production in cultured astrocytes. Glia, 46, 296–301.
  • Jayakumar, A. R., Rao, K. V., Murthy, Ch. R., & Norenberg, M. D. (2006). Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochemistry International, 48, 623–628.
  • Kauppinen, T. M., Chan, W. Y., Suh, S. W., Wiggins, A. K., Huang, E. J., & Swanson, R. A. (2006). Direct phosphorylation and regulation of poly (ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proceedings of the National Academy Science of the United States of America, 103, 7136–7141.
  • Kollegger, H., McBean, G. J., & Tipton, K. F. (1991). The inhibition of glutamine synthetase in rat corpus striatum in vitro by methionine sulfoximine increases the neurotoxic effects of kainate and N-methyl-D-aspartate. Neuroscience Letters, 130, 95–98.
  • Kosenko, E., Llansola, M., Montoliu, C., Monfort, P., RodrigoR., Hernandez-Viadel, M., et al. (2003). Glutamine synthetase activity and glutamine content in brain: Modulation by NMDA receptors and nitric oxide. Neurochemistry International, 43, 493–499.
  • Kvamme, E., & Lenda, K. (1982). Regulation of glutaminase by endogenous glutamate, ammonia and 2-oxoglutarate in synaptosomal enriched preparation from rat brain. Neurochemical Research, 7, 667–678.
  • Kvamme, E., Roberg, B., & Torgner, I. A. (2000a). Glutamine transport in brain mitochondria. Neurochemistry International, 37, 131–138.
  • Kvamme, E., Roberg, B., & Torgner, I. A. (2000b). Phosphate-activated glutaminase and mitochondrial glutamine transport in the brain. Neurochemical Research, 25, 1407–1419.
  • Kvamme, E., Svenneby, G., Hertz, L., & Schousboe, A. (1982). Properties of phosphate activated glutaminase in astrocytes cultured from mouse brain. Neurochemical Research, 7, 761–770.
  • Lee, A., Lingwood, B. E., Bjorkman, S. T., Miller, S. M., Poronnik, P., Barnett, (2010). Rapid loss of glutamine synthetase from astrocytes in response to hypoxia: Implications for excitotoxicity. Journal of Chemical Neuroanatomy, 39, 211–220.
  • Lipton, P. (1999). Ischemic cell death in brain neurons. Physiological Reviews, 79, 1431–1568.
  • Madl, J. E., & Royer, S. M. (1999). Glutamate in synaptic terminals is reduced by lack of glucose but not hypoxia in rat hippocampal slices. Neuroscience, 94, 417–430.
  • Mates, J. M., Segura, J. A., Alonso, F. J., & Marquez, J. (2006). Pathways from glutamine to apoptosis. Frontiers of Bioscience, 11, 3164–3180.
  • McKena, M. C. (2007). The glutamate–glutamine cycle is not stoichiometric: Fates of glutamate in brain. Journal of Neuroscience Research, 85, 3347–3358.
  • Molchanova, S., Koobi, P., Oja, S. S., & Saransaari, P. (2004). Interstitial concentrations of amino acids in the rat striatum during global forebrain ischemia and potassium-evoked spreading depression. Neurochemical Research, 29, 1519–1527.
  • Monyer, H., & Choi, D. W. (1990). Glucose deprivation neuronal injury in vitro is modified by withdrawal of extracellular glutamine. Journal of Cerebral Blood Flow and Metabolism, 10, 337–342.
  • Nakata, N., Kato, H., & Kogure, K. (1993). Effects of repeated cerebral ischemia on extracellular amino acid concentrations measured with intracerebral microdialysis in the gerbil hippocampus. Stroke, 24, 458–463.
  • Newcomb, R., Pierce, A. R., Kano, T., Meng, W., Bosque-Hamilton, P., Taylor, L., (1998). Characterization of mitochondrial glutaminase and amino acids at prolonged times after experimental focal cerebral ischemia. Brain Research, 813, 103–111.
  • Newcomb, R., Sun, X., Taylor, L., Curthoys, N., & Giffard, R. G. (1997). Increased production of extracellular glutamate by the mitochondrial glutaminase following neuronal death. Journal of Biological Chemistry, 272, 11276–11282.
  • Norenberg, M. D., Jayakumar, A. R., Rama Rao, K. V., & Panickar, K. S. (2007). New concepts in the mechanism of ammonia-induced astrocyte swelling. Metabolic Brain Disease, 22(3–4), 219–234.
  • Pascual, J. M., Carceller, F., Roda, J. M., & Cerdan, S. (1998). Glutamate, glutamine, and GABA as substrates for the neuronal and glial compartments after focal cerebral ischemia in rats. Stroke, 29, 1048–1056.
  • Peng, L., Gu, L., Zhang, H., Huang, X., Hertz, E., & Hertz, L. (2007). Glutamine as an energy substrate in cultured neurons during glucose deprivation. Journal of Neuroscience Research, 85, 3480–3486.
  • Petito, C. K., Chung, M. C., Verkhovsky, L. M., & Cooper, A. J. (1992). Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Research, 569, 275–280.
  • Petroff, O. A., Errante, L. D., Rothman, D. L., Kim, J. H., & Spencer, D. D. (2002). Glutamate–glutamine cycling in the epileptic human hippocampus. Epilepsia, 43, 703–710.
  • Pichili, V. B., Rao, K. V., Jayakumar, A. R., & Norenberg, M. D. (2007). Inhibition of glutamine transport into mitochondria protects astrocytes from ammonia toxicity. Glia, 55, 801–809.
  • Raevskii, K. S., & Georgiev, V. P. (1986). Amino acid transmitters [in Russian]. Moscow: Meditsina.
  • Ramaharobandro, N., Borg, J., Mandel, P., & Mark, J. (1982). Glutamine and glutamate transport in cultured neuronal and glial cells. Brain Research, 244, 113–121.
  • Rama Rao, K. V., Jayakumar, A. R., & Norenberg, M. D. (2003). Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochemistry International, 43, 517–523.
  • Rama Rao, K. V., Jayakumar, A. R., & Norenberg, M. D. (2005). Differential response of glutamine in cultured neurons and astrocytes. Journal of Neuroscience Research, 79, 193–199.
  • Rama Rao, K. V., & Norenberg, M. D. (2004). Manganese induces the mitochondrial permeability transition in cultured astrocytes. Journal of Biological Chemistry, 279, 32333–32338.
  • Rao, R., Ennis, K., Long, J. D., Ugurbil, K., Gruetter., R., & Tkac, I. (2010). Neurochemical changes in the developing rat hippocampus during prolonged hypoglycemia. Journal of Neurochemistry, 114(3), 728–738.
  • Robinson, S. R. (2000). Neuronal expression of glutamine synthetase in Alzheimer's disease indicates a profound impairment of metabolic interactions with astrocytes. Neurochemistry International, 36, 471–482.
  • Rodrigo, R., & Felipo, V. (2007). Control of brain glutamine synthesis by NMDA receptors. Frontiers of Bioscience, 12, 883–890.
  • Sandberg, M., Butcher, S. P., & Hagberg, H. (1986). Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: In vivo dialysis of the rat hippocampus. Journal of Neurochemistry, 47, 178–184.
  • Schousboe, A., Westergaard, N., Waagepetersen, H. S., Larsson,O. M., Bakken, I. J., & Sonnewald, U. (1997). Trafficking between glia and neurons of TCA cycle intermediates and related metabolites. Glia, 21, 99–105.
  • Shapiro, R. A., Haser, W. G., & Curthoys, N. P. (1985). The orientation of phosphate-dependent glutaminase on the inner membrane of rat renal mitochondria. Archives of Biochemistry And Biophysics, 243, 1–7.
  • Shimada, N., Graf, R., Rosner, G., & Heiss, W. D. (1993). Ischemia-induced accumulation of extracellular amino acids in cerebral cortex, white matter, and cerebrospinal fluid. Journal of Neurochemistry, 60, 66–71.
  • Shokati, T., Zwingmann, C., & Leibfritz, D. (2005). Contribution of extracellular glutamine as an anaplerotic substrate to neuronal metabolism: A re-evaluation by multinuclear NMR spectroscopy in primary cultured neurons. Neurochemical Research, 30, 1269–1281.
  • Silverstein, F. S., Naik, B., & Simpson, J. (1991). Contribution of extracellular glutamine as an anaplerotic substrate to neuronal metabolism: A re-evaluation by multinuclear NMR spectroscopy in primary cultured neurons. Journal of Pediatric Research, 30, 587–590.
  • Silverstein, F. S., Simpson, J., & Gordon, K. E. (1990). Hypoglycemia alters striatal amino acid efflux in perinatal rats: An in vivo microdialysis study. Annals of Neurology, 28, 516–521.
  • Sonnewald, U., Westergaard, N., & Schousboe, A. (1997). Glutamate transport and metabolism in astrocytes. Glia, 21, 56–63.
  • Stelmashook, E. V., Isaev, N. K., & Zorov, D. B. (2007). Paraquat potentiates glutamate toxicity in immature cultures of cerebellar granule neurons. Toxicology Letters, 174, 82–88.
  • Stelmashook, E. V., Lozier, E. R., Goryacheva, E. S., Mergenthaler, P., Novikova, S. V., Zorov, D. B., (2010). Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity. Neuroscience Letters, 482, 151–155.
  • Stelmashook., E. V., Novikova., S. V., & Isaev, N. K. (2010). Glutamine effect on cultured granule neuron death induced by glucose deprivation and chemical hypoxia. Biochemistry (Moscow), 75(8), 1039–1044.
  • Stringaris, A. K., Bruck, W., Tumani, H., Schmidt, H., & Nau, R. (1997). Increased glutamine synthetase immunoreactivity in experimental pneumococcal meningitis. Acta Neuropathologica, 93, 215–218.
  • Strosznajder, R. P., Jesko, H., & Dziewulska, J. (2005). Effect of carvedilol on neuronal survival and poly(ADP-ribose) polymerase activity in hippocampus after transient forebrain ischemia. Acta Neurobiologiae Experimentalis, 65, 137–143.
  • Suarez, I., Bodega, G., & Fernandez, B. (2002). Glutamine synthetase in brain: Effect of ammonia. Neurochemistry International, 41, 123–142.
  • Subbalakshmi, G. Y., & Murthy, C. R. (1985). Isolation of astrocytes, neurons and synaptosomes of rat brain cortex: Distribution of enzymes of glutamate metabolism. Neurochemical Research, 10, 239–250.
  • Sutherland, G. R., Tyson, R. L., & Auer, R. N. (2008). Truncation of the krebs cycle during hypoglycemic coma. Med Chem., 4(4), 379–385.
  • Svoboda, N., & Kerschbaum, H. H. (2009). L-Glutamine-induced apoptosis in microglia is mediated by mitochondrial dysfunction. European Journal of Neuroscience, 30, 196–206.
  • Swain, M., Butterworth, R. F., & Blei, A. T. (1992). Ammonia and related amino acids in the pathogenesis of brain edema in acute ischemic liver failure in rats. Hepatology, 15, 449– 453.
  • Tang, X. C., Rao, M. R., Hu, G., & Wang, H. (2000). Alterations of amino acid levels from striatum, hippocampus, and cerebral cortex induced by global cerebral ischemia in gerbil. Acta Pharmacologica Sinica, 21, 819–823.
  • Thoren, A. E., Helps, S. C., Nilsson, M., & Sims, N. R. (2006). The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats. Journal of Neurochemistry, 97, 968–978.
  • Tokime, T., Nozaki, K., Sugino, T., Kikuchi, H., Hashimoto, N., & Ueda, K. (1998). Enhanced poly(ADP-ribosyl)ation after focal ischemia in rat brain. Journal of Cerebral Blood Flow and Metabolism, 18(9), 991–997.
  • Tumani, H., Smirnov, A., Barchfeld, S., Olgemoller, U., Maier, K., Lange, P., (2000). Inhibition of glutamine synthetase in rabbit pneumococcal meningitis is associated with neuronal apoptosis in the dentate gyrus. Glia, 30, 11–18.
  • Uchiyama-Tsuyuki, Y., Araki, H., Yae, T., & Otomo, S. (1994). Changes in the extracellular concentrations of amino acids in the rat striatum during transient focal cerebral ischemia. Journal of Neurochemistry, 62, 1074–1078.
  • Van Der Hel, W. S., Notenboom, R. G., Bos, I. W., van Rijen, P. C., van Veelen, C. W., & de Graan, P. N. (2005). Reduced glutamine synthetase in hippocampal areas with neuron loss in temporal lobe epilepsy. Neurology, 64, 326–333.
  • Waagepetersen, H. S., Qu, H., Schousboe, A., & Sonnewald,U. (2001). Elucidation of the quantitative significance of pyruvate carboxylation in cultured cerebellar neurons and astrocytes. Journal of Neuroscience Research, 66, 763–770.
  • Waagepetersen, H. S., Qu, H., Sonnewald, U., Shimamoto, K., &Schousboe, A. (2005). Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons. Neurochemistry International, 47, 92–102.
  • Walton, H. S., & Dodd, P. R. (2007). Glutamate–glutamine cycling in Alzheimer's disease. Neurochemistry International, 50, 1052–1066.
  • Waniewski, R. A. (1992). Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. Journal of Neurochemistry, 58, 167–174.
  • Westergaard, N., Sonnewald, U., & Schousboe, A. (1995). Metabolic trafficking between neurons and astrocytes: The glutamate/glutamine cycle revisited. Developmental Neuroscience, 17, 203–211.
  • Ying, W., Alano, C. C., Garnier, P., & Swanson, R. A. (2005). NAD+ as a metabolic link between DNA damage and cell death. Journal of Neuroscience Research, 79, 216–223.
  • Ying, W., Chen, Y., Alano, C. C., & Swanson, R. A. (2002). Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. Journal of Cerebral Blood Flow and Metabolism, 22, 774–779.
  • Zeevalk, G. D., & Nicklas, W. J. (2000). Lactate prevents the alterations in tissue amino acids, decline in ATP, and cell damage due to aglycemia in retina. Journal of Neurochemistry, 75, 1027–1034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.