195
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Cannabinoid Treatment Renders Neurons Less Vulnerable Than Oligodendrocytes in Experimental Autoimmune Encephalomyelitis

&
Pages 510-520 | Received 19 Jan 2011, Published online: 15 Jun 2011

REFERENCES

  • Ahmed, Z., Doward, A. I., Pryce, G., Taylor, D. L., Pocock, J. M., Leonard, J. P., (2002). A role for caspase-1 and -3 in the pathology of experimental allergic encephalomyelitis: Inflammation versus degeneration. American Journal of Pathology, 161(5), 1577–1586.
  • Arevalo-Martin, A., Vela, J. M., Molina-Holgado, E., Borrell, J., & Guaza, C. (2003). Therapeutic action of cannabinoids in a murine model of multiple sclerosis. Journal of Neuroscience, 23(7), 2511–2516.
  • Baker, D., Jackson, S. J., & Pryce, G. (2007). Cannabinoid control of neuroinflammation related to multiple sclerosis. British Journal of Pharmacology, 152(5), 649–654.
  • Benkhoucha, M., Santiago-Raber, M. L., Schneiter, G., Chofflon, M., Funakoshi, H., Nakamura, T., (2010). Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+Foxp3+ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6424–6429.
  • Bitsch, A., Schuchardt, J., Bunkowski, S., Kuhlmann, T., & Bruck, W. (2000). Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain, 123 (Pt 6), 1174–1183.
  • Croxford, J. L., & Miller, S. D. (2003). Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. Journal of Clinical Investigation, 111(8), 1231–1240.
  • Croxford, J. L., Pryce, G., Jackson, S. J., Ledent, C., Giovannoni, G., Pertwee, R. G., (2008). Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. Journal of Neuroimmunology, 193(1–2), 120–129.
  • Das, A., Guyton, M. K., Butler, J. T., Ray, S. K., & Banik, N. L. (2008). Activation of calpain and caspase pathways in demyelination and neurodegeneration in animal model of multiple sclerosis. CNS & Neurological Disorders Drug Targets, 7(3), 313–320.
  • Das, A., Guyton, M. K., Matzelle, D. D., Ray, S. K., & Banik, N. L. (2008). Time-dependent increases in protease activities for neuronal apoptosis in spinal cords of Lewis rats during development of acute experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 86(13), 2992–3001.
  • Dong, M., Liu, R., Guo, L., Li, C., & Tan, G. (2008). Pathological findings in rats with experimental allergic encephalomyelitis. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 116(11), 972–984.
  • Duriez, P. J., & Shah, G. M. (1997). Cleavage of poly(ADP-ribose) polymerase: A sensitive parameter to study cell death. Biochemistry & Cell Biology, 75(4), 337–349.
  • Furtado, G. C., Olivares-Villagomez, D., Curotto de Lafaille, M. A., Wensky, A. K., Latkowski, J. A., & Lafaille, J. J. (2001). Regulatory T cells in spontaneous autoimmune encephalomyelitis. Immunological Reviews, 182, 122–134.
  • Gonsette, R. E. (2008). Neurodegeneration in multiple sclerosis: The role of oxidative stress and excitotoxicity. Journal of Neurological Sciences, 274(1–2), 48–53.
  • Guyton, M. K., Wingrave, J. M., Yallapragada, A. V., Wilford, G. G., Sribnick, E. A., Matzelle, D. D., (2005). Upregulation of calpain correlates with increased neurodegeneration in acute experimental auto-immune encephalomyelitis. Journal of Neuroscience Research, 81(1), 53–61.
  • Guzman, M., Sanchez, C., & Galve-Roperh, I. (2002). Cannabinoids and cell fate. Pharmacology & Therapeutics, 95(2), 175–184.
  • Hasseldam, H., & Johansen, F. F. (2010). Neuroprotection without immunomodulation is not sufficient to reduce first relapse severity in experimental autoimmune encephalomyelitis. Neuroimmunomodulation, 17(4), 252–264.
  • Hassen, G. W., Feliberti, J., Kesner, L., Stracher, A., & Mokhtarian, F. (2008). Prevention of axonal injury using calpain inhibitor in chronic progressive experimental autoimmune encephalomyelitis. Brain Research, 1236, 206–215.
  • Hegde, V. L., Hegde, S., Cravatt, B. F., Hofseth, L. J., Nagarkatti, M., & Nagarkatti, P. S. (2008). Attenuation of experimental autoimmune hepatitis by exogenous and endogenous cannabinoids: Involvement of regulatory T cells. Molecular Pharmacology, 74(1), 20–33.
  • Jackson, S. J., Lee, J., Nikodemova, M., Fabry, Z., & Duncan, I. D. (2009). Quantification of myelin and axon pathology during relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. Journal of Neuropathology & Experimental Neurology, 68(6), 616–625.
  • Jackson, S. J., Pryce, G., Diemel, L. T., Cuzner, M. L., & Baker, D. (2005). Cannabinoid-receptor 1 null mice are susceptible to neurofilament damage and caspase 3 activation. Neuroscience, 134(1), 261–268.
  • Katona, S., Kaminski, E., Sanders, H., & Zajicek, J. (2005). Cannabinoid influence on cytokine profile in multiple sclerosis. Clinical & Experimental Immunology, 140(3), 580–585.
  • Killestein, J., Hoogervorst, E. L., Reif, M., Blauw, B., Smits, M., Uitdehaag, B. M., (2003). Immunomodulatory effects of orally administered cannabinoids in multiple sclerosis. Journal of Neuroimmunology, 137(1–2), 140–143.
  • Kohm, A. P., Carpentier, P. A., Anger, H. A., & Miller, S. D. (2002). Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. Journal of Immunology, 169(9), 4712–4716.
  • Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., (2006). IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. Journal of Immunology, 177(1), 566–573.
  • Korn, T. (2008). Pathophysiology of multiple sclerosis. Journal of Neurological, 255(Suppl 6), 2–6.
  • Linker, R. A., Brechlin, P., Jesse, S., Steinacker, P., Lee, D. H., Asif, A. R. (2009). Proteome profiling in murine models of multiple sclerosis: Identification of stage specific markers and culprits for tissue damage. PLoS ONE, 4(10), e7624.
  • Marsicano, G., Moosmann, B., Hermann, H., Lutz, B., & Behl, C. (2002). Neuroprotective properties of cannabinoids against oxidative stress: Role of the cannabinoid receptor CB1. Journal of Neurochemistry, 80(3), 448–456.
  • McPartland, J. M., Glass, M., & Pertwee, R. G. (2007). Meta-analysis of cannabinoid ligand binding affinity and receptor distribution: Interspecies differences. British Journal of Pharmacology, 152(5), 583–593.
  • Nicot, A., Ratnakar, P. V., Ron, Y., Chen, C. C., & Elkabes, S. (2003). Regulation of gene expression in experimental autoimmune encephalomyelitis indicates early neuronal dysfunction. Brain, 126(Pt 2), 398–412.
  • Paintlia, A. S., Paintlia, M. K., Singh, I., & Singh, A. K. (2008). Combined medication of lovastatin with rolipram suppresses severity of experimental autoimmune encephalomyelitis. Experimental Neurology, 214(2), 168–180.
  • Petitet, F., Jeantaud, B., Bertrand, P., & Imperato, A. (1999). Cannabinoid penetration into mouse brain as determined by ex vivo binding. European Journal of Pharmacology, 374(3), 417–421.
  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), e45.
  • Piani, D., Frei, K., Do, K. Q., Cuenod, M., & Fontana, A. (1991). Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate. Neuroscience Letters, 133(2), 159–162.
  • Pitt, D., Werner, P., & Raine, C. S. (2000). Glutamate excitotoxicity in a model of multiple sclerosis. Nature Medicine, 6(1), 67–70.
  • Qi, X., Lewin, A. S., Sun, L., Hauswirth, W. W., & Guy, J. (2007). Suppression of mitochondrial oxidative stress provides long-term neuroprotection in experimental optic neuritis. Investigative Ophthalmology & Visual Science, 48(2), 681–691.
  • Rog, D. J., Nurmikko, T. J., Friede, T., & Young, C. A. (2005). Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology, 65(6), 812–819.
  • Sadri, S., Bahrami, F., Khazaei, M., Hashemi, M., & Asgari, A. (2010). Cannabinoid receptor agonist WIN-55,212-2 protects differentiated PC12 cells from organophosphorus- induced apoptosis. International Journal of Toxicology, 29(2), 201–208.
  • Sarne, Y., & Keren, O. (2004). Are cannabinoid drugs neurotoxic or neuroprotective? Medical Hypotheses, 63(2), 187–192.
  • Trapp, B. D., & Nave, K. A. (2008). Multiple sclerosis: An immune or neurodegenerative disorder? Annual Review of Neuroscience, 31, 247–269.
  • Wujek, J. R., Bjartmar, C., Richer, E., Ransohoff, R. M., Yu, M., Tuohy, V. K., (2002). Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. Journal of Neuropathology & Experimental Neurology, 61(1), 23–32.
  • Zajicek, J., Fox, P., Sanders, H., Wright, D., Vickery, J., Nunn, A., (2003). Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): Multicentre randomised placebo-controlled trial. Lancet, 362(9395), 1517–1526.
  • Zhang, X., Koldzic, D. N., Izikson, L., Reddy, J., Nazareno, R. F., Sakaguchi, S., (2004). IL-10 is involved in the suppression of experimental autoimmune encephalomyelitis by CD25+CD4+ regulatory T cells. International Immunology, 16(2), 249–256.
  • Zheng, S. G., Wang, J., & Horwitz, D. A. (2008). Cutting edge: Foxp3+CD4+CD25 +regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. Journal of Immunology, 180(11), 7112–7116.
  • Zhuang, S. Y., Bridges, D., Grigorenko, E., McCloud, S., Boon, A., Hampson, R. E., (2005). Cannabinoids produce neuroprotection by reducing intracellular calcium release from ryanodine-sensitive stores. Neuropharmacology, 48(8), 1086–1096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.