923
Views
72
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training

, , , , &
Pages 403-415 | Received 20 Jan 2013, Accepted 26 Sep 2013, Published online: 31 Oct 2013

References

  • Escudero JV, Sancho J, Bautista D, Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998;29(9):1854–59.
  • Cozean CD, Pease WS, Hubbell SL. Biofeedback and functional electric stimulation in stroke rehabilitation. Arch Phys Med Rehabil 1988;69(6):401–5.
  • Buch E, Weber C, Cohen LG, Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 2008;39(3):910–17.
  • Dickstein R, Deutsch JE. Motor imagery in physical therapist practice. Phys Ther 2007;87(7):942–53.
  • Kaplan AY, Lim JJ, Jin KS, Unconscious operant conditioning in the paradigm of brain-computer interface based on color perception. Int J Neurosci 2005;115(6):781–802.
  • Pichiorri F, De Vico FF, Cincotti F, Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. J Neural Eng 2011;8(2): 25020.
  • Arroyo S, Lesser RP, Gordon B, Functional significance of the mu rhythm of human cortex: an electrophysiologic study with subdural electrodes. Electroencephalogr Clin Neurophysiol 1993;87(3):76–87.
  • Pfurtscheller G, Aranibar A. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalogr Clin Neurophysiol 1977;42(6):817–26.
  • Pfurtscheller G. Functional topography during sensorimotor activation studied with event-related desynchronization mapping. J Clin Neurophysiol 1989;6(1):75–84.
  • Daly JJ, Cheng R, Rogers J, Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther 2009;33(4):203–11.
  • Neuper C, Muller GR, Kubler A, Clinical application of an EEG-based brain-computer interface: a case study in a patient with severe motor impairment. Clin Neurophysiol 2003;114(3):399–409.
  • Sellers EW, Sellers EW. Clinical applications of brain-computer interface technology. Clin EEG and Neurosci 2011;42(4):iv–v.
  • Heller A, Wade DT, Wood VA, Arm function after stroke: measurement and recovery over the first three months. J Neurol Neurosurg Psychiatry 1987;50(6):714–19.
  • Hodkinson HM. Evalutation of a mental test score for assessment of mental impairment in the elderly. Ageing 1972;1(4):233–8.
  • Malouin F, Richards CL, Jackson PL, The kinesthetic and visual imagery questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J Neurol Phys Ther 2007;31(1):20–9.
  • Mutsaarts M, Steenbergen B, Bekkering H. Anticipatory planning deficits and task context effects in hemiparetic cerebral palsy. Exp Brain Res 2006;172(2):151–62.
  • Mulder T, Zijlstra S, Zijlstra W, The role of motor imagery in learning a totally novel movement. Exp Brain Res 2004;154(2):211–7.
  • Guillot A, Collet C, Nguyen VA, Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp 2009;30(7):2157–72.
  • McFarland DJ, McCane LM, David SV, Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 1997;103(3):386–94.
  • Jung TP, Makeig S, Humphries C, Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000;37(2):163–78.
  • Lee JH, Oh S, Jolesz FA, Application of independent component analysis for the data mining of simultaneous Eeg-fMRI: preliminary experience on sleep onset. Int J Neurosci 2009;119(8):1118–36.
  • Pfurtscheller G, Neuper C. Motor imagery and direct brain-computer communication. P Ieee 2001;89(7):1123–34.
  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Meth 2004;134(1):9–21.
  • Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 2000;8(4):441–6.
  • Vapnik VN. An overview of statistical learning theory. IEEE T Neural Networ, 1999;10(5):988–99.
  • Shindo K, Kawashima K, Ushiba J, Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J Rehabil Med 2011;43(10):951–7.
  • Yan J, Guo X, Jin Z, Cognitive alterations in motor imagery process after left hemispheric ischemic stroke. PLoS One 2012;7(8):e42922.
  • Sano A, Bakardjian H. Movement-related cortical evoked potentials using four-limb imagery. Int J Neurosci 2009;119(5): 639–63.
  • Fugl-Meyer AR, Jaasko L, Norlin V. The post-stroke hemiplegic patient. II. Incidence, mortality, and vocational return in Goteborg, Sweden with a review of the literature. Scand J Rehabil Med 1975;7(2):73–83.
  • Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res 1981;4(4):483–92.
  • Johnson SH, Sprehn G, Saykin AJ. Intact motor imagery in chronic upper limb hemiplegics: evidence for activity-independent action representations. J Cogn Neurosci 2002; 14(6):841–52.
  • Johnson SH. Imagining the impossible: intact motor representations in hemiplegics. Neuroreport 2000;11(4):729–32.
  • Mulder T. Motor imagery and action observation: cognitive tools for rehabilitation. J Neural Transm 2007;114(10): 1265–78.
  • Sharma N, Pomeroy VM, Baron J. Motor imagery: a backdoor to the motor system after stroke? Stroke 2006;37(7):1941–52.
  • Simmons L, Sharma N, Baron J, Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects. Neurorehab Neural Re 2008;22(5):458–67.
  • Ang KK, Guan C, Chua KS, A clinical evaluation of non-invasive motor imagery-based brain-computer interface in stroke. Conf Proc IEEE Eng Med Biol Soc 2008;2008: 4178–81.
  • Ramos-Murguialday A, Broetz D, Rea M, Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol 2013: n/a-n/a.
  • Page SJ, Levine P, Sisto S, A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil 2001;15(3):233–40.
  • Nunez PL., Srinivasan R. Electric fields of the brain: the neurophysics of EEG. 2nd ed. New York: Oxford University Press; 2006:17–26.
  • Pfurtscheller G, Sager W, Wege W. Correlations between CT scan and sensorimotor EEG rhythms in patients with cerebrovascular disorders. Electroencephalogr Clin Neurophysiol 1981;52(5):473–85.
  • Stepien M, Conradi J, Waterstraat G, Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke. Neurosci Lett 2011;488(1):17–21.
  • Shindo K, Kawashima K, Ushiba J, Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study. J Rehabil Med 2011;43(10):951–7.
  • Sharma N, Simmons LH, Jones PS, Motor imagery after subcortical stroke: a functional magnetic resonance imaging study. Stroke 2009;40(4):1315–24.
  • Murase N, Duque J, Mazzocchio R, Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 2004;55(3):400–9.
  • Gerloff C, Bushara K, Sailer A, Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke. Brain 2006;129(Pt 3):791–808.
  • Fridman EA, Hanakawa T, Chung M, Reorganization of the human ipsilesional premotor cortex after stroke. Brain 2004;127(Pt 4):747–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.