1,058
Views
89
CrossRef citations to date
0
Altmetric
REVIEWS

The significance of matrix metalloproteinase (MMP)-2 and MMP-9 in the ischemic stroke

, , , &
Pages 707-716 | Received 26 Sep 2013, Accepted 02 Dec 2013, Published online: 16 Jan 2014

References

  • Marsh JD, Keyrouz SG. Stroke prevention and treatment. J Am Coll Cardiol 2010;56:683–91.
  • Russek NS, Jensen MB. Histological quantification of brain tissue inflammatory cell infiltration after focal cerebral infarction: a systematic review. Int J Neurosci. 2013 [Epub ahead of print].
  • Kurzepa J, Bartosik-Psujek H, Suchozebrska-Jesionek D, Role of matrix metalloproteinases in the pathogenesis of multiple sclerosis. Neurol Neurochir Pol 2005;39:63–7.
  • Hrabec E, Naduk J, Strek M, Hrabec Z. Type IV collagenases (MMP-2 and MMP-9) and their substrates–intracellular proteins, hormones, cytokines, chemokines and their receptors. Postepy Biochem 2007;53:37–45.
  • Romi F, Helgeland G, Gilhus NE. Serum levels of matrix metalloproteinases: implications in clinical neurology. Eur Neurol 2012;67:121–8.
  • Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA 1962;48:1014–22.
  • Fic P, Zakrocka I, Kurzepa J, Stepulak A. Matrix metalloproteinases and atherosclerosis. Postepy Hig Med Dosw (Online) 2011;65:16–27.
  • Cha H, Kopetzki E, Huber R, Structural basis of the adaptive molecular recognition by MMP9. J Mol Biol 2002;320:1065–79.
  • Rowsell S, Hawtin P, Minshull CA, Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. J Mol Biol 2002;319:173–81.
  • Wilhelm SM, Collier IE, Marmer BL, SV40-transformed human lung fibroblasts secrete a 92-kDa type IV collagenase which is identical to that secreted by normal human macrophages. J Biol Chem 1989;264:17213–21.
  • Murphy G, Knäuper V. Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol 1997;15:511–8.
  • Opdenakker G, Van den Steen PE, Van Damme J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol 2001;22:571–9.
  • Polette M, Nawrocki-Raby B, Gilles C, Tumour invasion and matrix metalloproteinases. Crit Rev Oncol Hematol 2004;49:179–86.
  • Yu Y, Koike T, Kitajima S, Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions. Histol Histopathol 2008;23:1503–16.
  • Mott JD, Werb Z. Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 2004;16:558–64.
  • Chandler S, Coates R, Gearing A, Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 1995;201:223–6.
  • Schmidt R, Bültmann A, Ungerer M, Extracellular matrix metalloproteinase inducer regulates matrix metalloproteinase activity in cardiovascular cells: implications in acute myocardial infarction. Circulation 2006;113:834–41.
  • Ito H, Duxbury M, Benoit E, Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1 dependent induction of matrix metalloproteinase-2. Cancer Res 2004;64:7439–46.
  • Doronzo G, Russo I, Mattiello L, C-reactive protein increases matrix metalloproteinase-2 expression and activity in cultured human vascular smooth muscle cells. J Lab Clin Med 2005;146:287–98.
  • Petty MA, Wettstein JG. Elements of cerebral microvascular ischaemia. Brain Res Brain Res Rev 2001;36:23–34.
  • Loy M, Burggraf D, Martens KH, A gelatin in situ-overlay technique localizes brain matrix metalloproteinase activity in experimental focal cerebral ischemia. J Neurosci Methods 2002;116:125–33.
  • Sang QX, Birkedal-Hansen H, Van Wart HE. Proteolytic and non-proteolytic activation of human neutrophil progelatinase B. Biochim Biophys Acta 1995;1251:99–108.
  • Galazka G, Windsor LJ, Birkedal-Hansen H, Engler JA. APMA (4-aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in addition to those with cysteine-75 in the propeptide. Biochemistry 1996;35: 11221–7.
  • Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 2000;1477:267–83.
  • Isnard N, Legeais JM, Renard G, Robert L. Effect of hyaluronan on MMP expression and activation. Cell Biol Int 2001;25:735–9.
  • Cuzner ML, Gveric D, Strand C, The expression of tissue-type plasminogen activator, matrix metalloproteases and endogenous inhibitors in the central nervous system in multiple sclerosis: comparison of stages in lesion evolution. J Neuropathol Exp Neurol 1996;55:1194–204.
  • Peppin GJ, Weiss SJ. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc Natl Acad Sci USA 1986;83:4322–6.
  • Sato H, Takino T, Okada Y, A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994;370:61–5.
  • Seltzer JL, Lee AY, Akers KT, Activation of 72-kDa type IV collagenase/gelatinase by normal fibroblasts in collagen lattices is mediated by integrin receptors but is not related to lattice contraction. Exp Cell Res 1994;213:365–74.
  • Docherty AJ, Lyons A, Smith BJ, Sequence of human tissue inhibitor of metalloproteinases and its identity to erythroid-potentiating activity. Nature 1985;318:66–9.
  • Stetler-Stevenson WG, Bersch N, Golde DW. Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity. FEBS Lett 1992;296:231–4.
  • Guedez L, Stetler-Stevenson WG, Wolff L, In vitro suppression of programmed cell death of B cells by tissue inhibitor of metalloproteinases-1. J Clin Invest 1998;102:2002–10.
  • Serra P, Bruczko M, Zapico JM, MMP-2 selectivity in hydroxamate-type inhibitors. Curr Med Chem 2012; 19:1036–64.
  • Li H, Ezra DG, Burton MJ, Bailly M. Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. Invest Ophthalmol Vis Sci 2013;54:4675–82.
  • Kiani A, Mostafaie A, Shirazi FH, Ghazanfari T. Serum profiles of matrix metalloproteinases and their tissue inhibitors in long-term pulmonary complication induced by sulfur mustard: Sardasht-Iran Cohort Study (SICS). Int Immunopharmacol 2013;17:967–7.
  • Puljiz I, Markotić A, Cvetko Krajinovic L, Mycoplasma pneumoniae in adult community-acquired pneumonia increases matrix metalloproteinase-9 serum level and induces its gene expression in peripheral blood mononuclear cells. Med Sci Monit 2012;18:CR500–5.
  • Pawlak K, Mysliwiec M, Pawlak D. Peripheral blood level alterations of MMP-2 and MMP-9 in patients with chronic kidney disease on conservative treatment and on hemodialysis. Clin Biochem 2011;44:838–43.
  • Kurzepa J, Bielewicz J, Grabarska A, Matrix metalloproteinase-9 contributes to the increase of tau protein in serum during acute ischemic stroke. J Clin Neurosci 2010; 17:997–9.
  • Touzani O, Roussel S, MacKenzie ET. The ischaemic penumbra. Curr Opin Neurol 2001;14:83–8.
  • Castillo J, Rodríguez I. Biochemical changes and inflammatory response as markers for brain ischaemia: molecular markers of diagnostic utility and prognosis in human clinical practice. Cerebrovasc Dis 2004;17(Suppl 1):7–18.
  • Camerlingo M, Valente L, Tognozzi M, C-reactive protein levels in the first three hours after acute cerebral infarction. Int J Neurosci 2011;121:65–8.
  • Cojocarui IM, Cojocaru M, Sapira V, Changes in plasma matrix metalloproteinase-9 levels in patients with acute ischemic stroke. Rom J Intern Med 2012;50:155–8.
  • Kreisel SH, Stroick M, Reuter B, MMP-2 concentrations in stroke according to etiology: adjusting for enzyme degradation in stored deep-frozen serum and other methodological pitfalls. J Clin Neurosci 2012;19:1564–7.
  • Copin JC, Gasche Y. Matrix metalloproteinase-9 deficiency has no effect on glial scar formation after transient focal cerebral ischemia in mouse. Brain Res 2007;1150:167–73.
  • Park KP, Rosell A, Foerch C, Plasma and brain matrix metalloproteinase-9 after acute focal cerebral ischemia in rats. Stroke 2009;40:2836–42.
  • Clark AW, Krekoski CA, Bou SS, Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 1997;238:53–6.
  • Montaner J, Alvarez-Sabín J, Barberá G, Correlation between the expression of proinflammatory cytokines and matrix metalloproteinases in the acute phase of an ischemic stroke. Rev Neurol. 2001;33:115–8.
  • Yamada H, Yoneda M, Inaguma S, Infliximab counteracts tumor necrosis factor-α-enhanced induction of matrix metalloproteinases that degrade claudin and occludin in non-pigmented ciliary epithelium. Biochem Pharmacol 2013;85:1770–82.
  • Montaner J, Alvarez-Sabín J, Molina CA, Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001;32:2762–744.
  • Cuadrado E, Ortega L, Hernández-Guillamon M, Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol. 2008;84:207–14.
  • Suzuki Y. Role of tissue-type plasminogen activator in ischemic stroke. J Pharmacol Sci 2010;113:203–7.
  • Hu K, Yang J, Tanaka S, Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene expression. J Biol Chem 2006;281:2120–7.
  • Copin JC, Gasche Y. Matrix metalloproteinase-9 deficiency has no effect on glial scar formation after transient focal cerebral ischemia in mouse. Brain Res 2007;1150:167–73.
  • Hill JW, Poddar R, Thompson JF, Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen-glucose deprivation in neurons. Neuroscience 2012;220:277–90.
  • Yang Y, Candelario-Jalil E, Thompson JF, Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J Neurochem 2010;112:134–49.
  • Asahi M, Asahi K, Jung JC, Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 2000;20:1681–9.
  • Asahi M, Sumii T, Fini ME, Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. Neuroreport 2001;12:3003–7.
  • Varoglu AO, Kuyucu M, Demir R, Prognostic values of lesion volume and biochemical markers in ischemic and hemorrhagic stroke: a stereological and clinical study. Int J Neurosci 2009;119:2206–18.
  • Bielewicz J, Kurzepa J, Stelmasiak Z, Bartosik-Psujek H. Biochemical markers of ischemic stroke. Curr Probl Psychiatry 2011;4:488–94.
  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95.
  • de Lemos JA. Increasingly sensitive assays for cardiac troponins: a review. JAMA 2013;309:2262–9.
  • Ryu SR, Choi IS, Bian RX, The effect of C-reactive protein on functional outcome in ischemic stroke patients. Int J Neurosci 2009;119:336–44.
  • Laskowitz DT, Kasner SE, Saver J, Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke 2009;40:77–85.
  • Amaro S, Obach V, Cervera A, Course of matrix metalloproteinase-9 isoforms after the administration of uric acid in patients with acute stroke: a proof-of-concept study. J Neurol 2009;256:651–6.
  • Kurzepa J, Bielewicz J, Czekajska-Chehab E, CT volume/density ratio as the marker of ischaemic brain injury. Acta Neurol Scand 2011;123:310–5.
  • Rosenberg GA, Cunningham LA, Wallace J, Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 2001;893:104–12.
  • Lucivero V, Prontera M, Mezzapesa DM, Different roles of matrix metalloproteinases-2 and -9 after human ischaemic stroke. Neurol Sci 2007;28:165–70.
  • Horstmann S, Kalb P, Koziol J, Profiles of matrixmetalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke 2003;34:2165–70.
  • Roycik MD, Myers JS, Newcomer RG, Sang QX. Matrix metalloproteinase inhibition in atherosclerosis and stroke. Curr Mol Med 2013;13:1299–313.
  • Jani M, Tordai H, Trexler M, Hydroxamate-based peptide inhibitors of matrix metalloprotease 2. Biochimie 2005;87:385–92.
  • Yang Y, Estrada EY, Thompson JF, Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007;27:697–709.
  • Gasche Y, Copin JC, Sugawara T, Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2001;21:1393–400.
  • Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke 1998;29:2189–95.
  • Sood RR, Taheri S, Candelario-Jalil E, Early beneficial effect of matrix metalloproteinase inhibition on blood–brain barrier permeability as measured by magnetic resonance imaging countered by impaired long-term recovery after stroke in rat brain. J Cereb Blood Flow Metab 2008;28:431–8.
  • Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood–brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis 2010;38:376–85.
  • Kelly MA, Shuaib A, Todd KG. Matrix metalloproteinase activation and blood brain barrier breakdown following thrombolysis. Exp Neurol 2006;200:38–49.
  • Pfefferkorn T, Rosenberg GA. Closure of the blood–brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke 2003;34:2025–30.
  • Yang Y, Thompson JF, Taheri S, Early inhibition of MMP activity in ischemic rat brain promotes expression of tight junction proteins and angiogenesis during recovery. J Cereb Blood Flow Metab 2013;33:1104–14.
  • Sela-Passwell N, Kikkeri R, Dym O, Antibodies targeting the catalytic zinc complex of activated matrix metalloproteinases show therapeutic potential. Nat Med 2011;18:143–7.
  • Yanuck D, Mihos CG, Santana O. Mechanisms and clinical evidence of the pleiotropic effects of the hydroxy-methyl-glutaryl-CoA reductase inhibitors in central nervous system disorders: a comprehensive review. Int J Neurosci. 2012;122:619–29.
  • Chen PS, Cheng CL, Kao Yang YH, Impact of early statin therapy in patients with ischemic stroke or transient ischemic attack. Acta Neurol Scand 2014;129:41–8.
  • Montaner J. Treatment with statins in the acute phase of ischemic stroke. Exp Rev Neurother 2005;5:211–21.
  • Ní Chróinín D, Asplund K, Åsberg S, Statin therapy and outcome after ischemic stroke: systematic review and meta-analysis of observational studies and randomized trials. Stroke 2013;44:448–56.
  • Szczepańska-Szerej A, Kurzepa J, Wojczal J, Stelmasiak Z. Simvastatin displays an antioxidative effect by inhibiting an increase in the serum 8-isoprostane level in patients with acute ischemic stroke: brief report. Clin Neuropharmacol 2011;34:191–4.
  • Szczepańska-Szerej A, Kurzepa J, Wojczal J, Stelmasiak Z. Simvastatin-induced prevention of the increase in TNF-alpha level in the acute phase of ischemic stroke. Pharmacol Rep 2007;59:94–7.
  • Kurzepa J, Bielewicz J, Bartosik-Psujek H, Simvastatin inhibits the increase in serum tau protein levels in the acute phase of ischemic stroke. Pharmacol Rep 2008;60:1014–8.
  • Kurzepa J, Szczepanska-Szerej A, Stryjecka-Zimmer M, Simvastatin could prevent increase of the serum MMP-9/TIMP-1 ratio in acute ischaemic stroke. Folia Biol (Praha) 2006;52:181–3.
  • Wang Z, Xue Y, Jiao H, Doxycycline-mediated protective effect against focal cerebral ischemia-reperfusion injury through the modulation of tight junctions and PKCδ signaling in rats. J Mol Neurosci 2012;47:89–100.
  • Burggraf D, Trinkl A, Dichgans M, Hamann GF. Doxycycline inhibits MMPs via modulation of plasminogen activators in focal cerebral ischemia. Neurobiol Dis 2007;25:506–13.
  • Barza M, Brown RB, Shanks C, Relation between lipophilicity and pharmacological behavior of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs. Antimicrob Agents Chemother 1975;8:713–20.
  • Liu J, Xiong W, Baca-Regen L, Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J Vasc Surg 2003;38: 1376–83.
  • Pires PW, Rogers CT, McClain JL, Doxycycline, a matrix metalloprotease inhibitor, reduces vascular remodeling and damage after cerebral ischemia in stroke-prone spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2011;301:H87–97.
  • Lee H, Park JW, Kim SP, Doxycycline inhibits matrix metalloproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol Dis 2009;34:189–98.
  • Murata Y, Rosell A, Scannevin RH, Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke 2008;39:3372–7.
  • Machado LS, Kozak A, Ergul A, Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci 2006;7:56.
  • Koistinaho M, Malm TM, Kettunen MI, Minocycline protects against permanent cerebral ischemia in wild type but not in matrix metalloprotease-9-deficient mice. J Cereb Blood Flow Metab 2005;25:460–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.