153
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Minocycline mechanism of neuroprotection involves the Bcl-2 gene family in optic nerve transection

, , , &
Pages 755-761 | Received 19 Jun 2013, Accepted 19 Dec 2013, Published online: 06 Feb 2014

References

  • Levkovitch-Verbin H, Spierer O, Vander S, Dardik R. Similarities and differences between primary and secondary degeneration of the optic nerve and the effect of minocycline. Graefes Arch Clin Exp Ophthalmol 2011;249(6):849–57.
  • Baptiste DC, Hartwick AT, Jollimore CA, An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Mol Pharmacol 2004;66(5):1113–22.
  • Baptiste DC, Powell KJ, Jollimore CA, Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 2005;134(2):575–82.
  • Levkovitch-Verbin H, Kalev-Landoy M, Habot-Wilner Z, Melamed S. Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch Ophthalmol 2006;124(4):520–6.
  • Bosco A, Inman DM, Steele MR, Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 2008;49(4):1437–46.
  • Baptiste DC, Hartwick AT, Jollimore CA, An investigation of the neuroprotective effects of tetracycline derivatives in experimental models of retinal cell death. Mol Pharmacol 2004;66:1113–22.
  • Hughes EH, Schlichtenbrede FC, Murphy CC, Minocycline delays photoreceptor death in the rds mouse through a microglia-independent mechanism. Exp Eye Res 2004;78(6):1077–84.
  • Zhang C, Lei B, Lam TT, Neuroprotection of photoreceptors by minocycline in light-induced retinal degeneration. Invest Ophthalmol Vis Sci 2004;45(8):2753–9.
  • Aronson AL. Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc 1980;176(10 Spec No):1061–8.
  • Teng YD, Choi H, Onario RC, Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci USA 2004;101(9):3071–6.
  • Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav Brain Res 2009;196(2):168–79.
  • Yang LP, Zhu XA, Tso MO. Minocycline and sulforaphane inhibited lipopolysaccharide-mediated retinal microglial activation. Mol Vis 2007;13:1083–93.
  • Yrjanheikki J, Tikka T, Keinanen R, A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 1999;96(23):13496–500.
  • Garrido-Mesa N, Zarzuelo A, Galvez J. What is behind the non-antibiotic properties of minocycline? Pharmacol Res. 2013;67(1):18–30.
  • Sanchez Mejia RO, Ona VO, Li M, Friedlander RM. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 2001;48(6):1393–9; discussion 9–401.
  • Zhu S, Stavrovskaya IG, Drozda M, Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002;417(6884):74–8.
  • Wang X, Zhu S, Drozda M, Minocycline inhibits caspase-independent and -dependent mitochondrial cell death pathways in models of Huntington's disease. Proc Natl Acad Sci USA 2003;100(18):10483–7.
  • Chen M, Ona VO, Li M, Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 2000;6(7):797–801.
  • Wang J, Wei Q, Wang CY, Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem 2004;279(19):19948–54.
  • Castanares M, Vera Y, Erkkila K, Minocycline up-regulates BCL-2 levels in mitochondria and attenuates male germ cell apoptosis. Biochem Biophys Res Commun 2005;337(2):663–9.
  • Levkovitch-Verbin H, Dardik R, Vander S, Melamed S. Mechanism of retinal ganglion cells death in secondary degeneration of the optic nerve. Exp Eye Res 2009;91(2):127–34.
  • Nickells RW, Semaan SJ, Schlamp CL. Involvement of the Bcl2 gene family in the signaling and control of retinal ganglion cell death. Prog Brain Res 2008;173:423–35.
  • Qin Q, Patil K, Sharma SC. The role of Bax-inhibiting peptide in retinal ganglion cell apoptosis after optic nerve transection. Neurosci Lett 2004;372(1–2):17–21.
  • Chierzi S, Strettoi E, Cenni MC, Maffei L. Optic nerve crush: axonal responses in wild-type and bcl-2 transgenic mice. J Neurosci 1999;19(19):8367–76.
  • Garcia-Valenzuela E, Gorczyca W, Darzynkiewicz Z, Sharma SC. Apoptosis in adult retinal ganglion cells after axotomy. J Neurobiol 1994;25(4):431–8.
  • Levkovitch-Verbin H, Dardik R, Vander S, Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes. Invest Ophthalmol Vis Sci 2006;47(6):2491–7.
  • Kernt M, Neubauer AS, Eibl KH, Minocycline is cytoprotective in human trabecular meshwork cells and optic nerve head astrocytes by increasing expression of XIAP, survivin, and Bcl-2. Clin Ophthalmol 2010;4:591–604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.