20
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Spatial vision in adults and infants: A tribute to russell harter

Pages 153-172 | Published online: 07 Jul 2009

References

  • Abramov I., Gordon J., Hendrickson A., Hainline L., Dobson V., LaBossiere E. The retina of the newborn human infant. Science 1982; 217: 265–267
  • Atkinson J., Braddick O., Braddick F. Acuity and contrast sensitivity of infant vision. Nature 1974; 247: 403–404
  • Atkinson J., Braddick O., Moar K. Development of contrast sensitivity over the first 3 months of life in the human infant. Vision Research 1977; 17: 1037–1044
  • Atkinson J., Braddick O., French J. Contrast sensitivity of the human neonate measured by the visual evoked potential. Investigative Ophthalmology and Visual Science 1979; 18: 210–213
  • Baitch L. W., Lewi D. W., Levi D. M. Evidence for nonlinear binocular interactions in human visual cortex. Vision Research 1988; 28: 1139–1149
  • Baitch L. W., Srebro R. Failure to of monocular nonlinearity in binocularly abnormal humans. Investigative Ophthalmology and Vision Science 1992; 1340, (Suppl. 33)
  • Banks M. S., Salapatek P. Contrast sensitivity function of the infant visual system. Vision Research 1976; 16: 867–869
  • Barber C., Galloway N. R. Adaptation effects in the transient visual evoked potential. Human evoked potentials, D. Lehmann, E. Galloway. Plenum, New York 1979; 17–30; 17–30
  • Beraldi N., Bisti S., Cattaneo A., Fiorentini A., Maffei L. Correlation between the preferred orientation and spatial frequency of neurones in visual areas 17 and 18 of the cat. Journal of Physiology 1982; 323: 603–618
  • Bergen J. R. Theories of visual texture perception. Spatial vision, D. Regan. Macmillan, London 1991; 114–134
  • Blakemore C., Campbell F. W. On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. Journal of Physiology 1969; 203: 237–260
  • Braddick O. J. The masking of apparent motion in random dot patterns. Vision Research 1973; 13: 355–369
  • Braddick O. J., Campbell F. W., Atkinson J. Channels in vision. Basic aspects. Handbook of sensory physiology, (Perception, Vol. VIII), R. Held, H. I. Leibowitz, H. L. Teuber. Springer, Berlin 1978
  • Bradley A., Switkes E., DeValois K. K. Orientation and spatial frequency selectivity of adaptation to color and luminance patterns. Vision Research 1988; 28: 841–856
  • DeValois K. K., Switkes E. Simultaneous masking interactions between chromatic and luminance gratings. Journal of the Optical Society of America 1983; 73: 11–18
  • Fiorentini A., Pirchio M., Sandini G. Developments of retinal acuity in infants evaluated with the electro-retinogram. Human Neurobiology 1984; 3: 93–96
  • Giaschi D., Regan D., Kothe A. C., Hong X. H., Sharpe J. A. Motion-defined letter detection and recognition in patients with multiple sclerosis. Annals of Neurology 1992, In press
  • Harter M. R. Evoked cortical response to checkerboard patterns: effect of check size as a function of retinal eccentricity. Vision Research 1970; 10: 1365–1376
  • Harter M. R. Visually evoked cortical potentials to the on-and offset of patterned light in humans. Vision Research 1971; 11: 685–695
  • Harter M. R. Binocular interaction: evoked potentials to dichopic stimulation. Visual evoked potentials in man, J. E. Desmedt. Clarendon, Oxford 1977; 208–233
  • Harter M. R., White C. T. Effects of contour sharpness and check size on visually evoked cortical potentials. Vision Research 1968; 8: 701–711
  • Harter M. R., White C. T. Evoked cortical responses to checkerboard patterns. Effect of check size as a function of visual acuity. Electroencephology and Clinical Neurophysiology 1970; 28: 48–54
  • Harter M. R., Seiple W. H., Salmon L. Binocular summation of visually evoked responses to pattern stimuli in humans. Vision Research 1973; 13: 1433–1446
  • Harter M. R., Towle V. L., Musso M. F. Size specificity and intraocular suppression. Vision Research 1976; 16: 1111–1117
  • He P., Regan D. Magnetic responses of the brain to texture-defined form: Dissociation of responses to form and to texture. Investigative Ophthalmology and Visual Science 1992; 834, (Suppl. 33)
  • Julesz B. Foundations of Cyclopean Perception. University of Chicago. 1971
  • Julesz B., Tyler C. W. Neurontropy, an entropy-like measure of neural correlation in binocular fusion and rivalry. Biological Cybernetics 1976; 22: 107–119
  • Julesz B., Kropfl W., Petrig B. Large evoked potentials to dynamic random dot correlograms and stereograms permit quick determination of stereopsis. Proceedings of the National Academy of Science USA 1980; 77: 2348–2351
  • Kaplan E., Shapley R. M. X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology 1982; 330: 125–143
  • Kulikowski J. J., Murray I. J., Parry N. R. A. Electrophysiological correlates of chromatic-opponent and achromatic stimulation in man. Colour vision deficiencies, B. Drum, G. Verriest. Kluwer, Dordrecht 1989; IX
  • Marg E., Freeman D. N., Peltzman P., Goldstein P. J. Visual acuity development in human infants: Evoked potential measurements. Investigative Ophthalmology 1976; 15: 150–153
  • Merigan W. H. Chromatic and achromatic vision of macaques: Role of the P pathway. Journal of Neuroscience 1989; 9: 776–783
  • Merigan W. H., Eskin T. A. ASpatio-temporal A vision of macaques with severe loss of Pb retinal ganglion cells. Vision Research 1986; 26: 1751–1761
  • Merigan W. H., Maunsell J. H. R. Macaque vision after magnocellular lateral geniculate lesions. Visual Neuroscience 1990; 5: 347–352
  • Morgan M. J. Positional acuity without monocular cues. Perception 1986; 15: 157–162
  • Mullen K. T. The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. Journal of Physiology 1985; 359: 381–400
  • Mustillo P., Francis E., Oross S., Fox R., Orban G. A. Anisotropics in global stereoscopic orientation discrimination. Vision Research 1988; 28: 1315–1321
  • Nakayama K., Tyler C. W. Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Research 1981; 21: 427–433
  • Nelson J. I., Seiple W. H., Kupersmith M. J., Carr R. E. A rapid evoked potential index of cortical adaptation. Investigative Ophthalmology and Visual Science 1984; 59: 454–464
  • Norcia A. M., Tyler C. W. Infant VEP acuity measurements: Analysis of individual differences and measurement error. Electroencephology and Clinical Neurophysiology 1985a; 61: 359–369
  • Norcia A. M., Tyler C. W. Spatial frequency sweep VEP: Visual acuity during the first year of life. Vision Research 1985b; 25: 1399–1408
  • Norcia A. M., Tyler C. W., Allen D. Electrophysiological assessment of contrast sensitivity in human infants. American Journal of Optometry and Physiological Optics 1986; 63: 12–15
  • Norcia A. M., Tyler C. W., Harner R. D. High visual contrast sensitivity in the young human infant. Investigative Ophthalmology and Visual Sciences 1988; 29: 44–49
  • Pirchio M., Spinelli D., Fiorentini A., Maffei L. Infant contrast sensitivity evaluated by evoked potentials. Brain Research 1978; 141: 179–184
  • Porciati V. Temporal and spatial properties of the pattern reversal VEPs in infants below 2 months of age. Human Neurobiology 1984; 3: 97–102
  • Regan D. A study of the visual system by the correlation of light stimuli and evoked electrical responses. Imperial College, London 1964, Thesis
  • Regan D. Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephology and Clinical Neurophysiology 1966; 20: 238–248
  • Regan D. Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine. Chapman & Hall, London 1972; 328, New York: Wiley. Reprinted in 1975
  • Regan D. Rapid objective refraction using evoked brain potentials. Investigative Ophthalmology 1973; 12: 669–679
  • Regan D. Electrophysiological evidence for colour channels in human pattern vision. Nature 1974; 250: 437–439
  • Regan D. Colour coding of pattern responses in man investigated by evoked potential feedback and direct plot techniques. Vision Research 1975a; 15: 175–183
  • Regan D. Recent advances in electrical recording from the human brain. Nature 1975b; 253: 401–407
  • Regan D. Speedy assessment of visual acuity in amblyopia by the evoked potential method. Ophthalmologica 1977; 175: 159–164
  • Regan D. Speedy evoked potential methods for assessing vision in normal and amblyopic eyes: Pros and cons. Vision Research 1980; 20: 265–269
  • Regan D. Spatial frequency mechanisms in human vision investigated by evoked potential recording. Vision Research 1983; 23: 1401–1408
  • Regan D. Form from motion parallax and form from luminance contrast: Vernier discrimination. Spatial Vision 1986; 1: 305–318
  • Regan D. Orientation discrimination for objects defined by relative motion and objects defined by luminance contrast. Vision Research 1989a; 29: 1389–1400
  • Regan D. Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York 1989b; 672
  • Regan D. Detection and spatial discriminations for objects defined by colour contrast, binocular disparity and motion parallax. Spatial vision, D. Regan. Macmilian, London 1991; 135–178
  • Regan D., Beverley K. I. The dissociation of sideways movements from movements in depth: psy-chophysics. Vision Research 1973; 13: 2403–2415
  • Regan D., Beverley K. I. Figure-ground segregation by motion-contrast and by luminance-contrast. Journal of the Optical Society of American A 1984; 1: 433–442
  • Regan D., Hamstra S. Shape discrimination for motion-defined and contrast-defined form: squareness is special. Perception 1991; 20: 315–336
  • Regan D., Hamstra S. Dissociation of orientation discrimination from form detection for motion-defined bars and luminance-defined bars: effects of dot lifetime and presentation duration. Vision Research 1992; 32: 1655–1666
  • Regan D., Hamstra S. Shape discrimination for rectangles defined by disparity alone, by disparity plus luminance and by disparity plus motion. Vision Research 1993; 34: 2277–2291
  • Regan D., Hamstra S. Orientation discrimination in cyclopean vision. Vision Research 1994, in press
  • Regan D., He P. Magnetic brain responses to chromatic contrast in human. Investigative Ophthalmology and Visual Science 1993; 794, (Suppl. 34)
  • Regan D., Maxner C. Orientation-dependent loss of contrast sensitivity for pattern and flicker in multiple sclerosis. Clinical Vision and Science 1986; 1: 1–23
  • Regan D., Regan M. P. “Dissecting” the visual and auditory pathways by means of the two-input technique. Proceedings of the conference on electric and magnetic activity of the central nervous system, Trondheim, Norway. AGARD Conference Proceedings 1987a; 432(6)1–9
  • Regan D., Regan M. P. Nonlinearity in human visual responses to two-dimensional patterns and limitations of fourier methods. Vision Research 1987b; 27: 2181–2183
  • Regan D., Regan M. P. Objective evidence for phase-independent spatial frequency analysis in the human visual pathway. Vision Research 1988; 28: 187–191
  • Regan D., Spekreijse H. Electrophysiological correlate of binocular depth perception in man. Nature 1970; 255: 92–94
  • Regan D., Spekreijse H. Evoked potential indications of colour blindness. Vision Research 1974; 14: 89–95
  • Regan D., Kothe A. C., Sharpe J. A. Recognition of motion-defined shapes in patients with multiple sclerosis and optic neuritis. Brain 1991; 114: 1129–1155
  • Regan D., Silver R., Murray T. J. Visual acuity and contrast sensitivity in multiple sclerosis - hidden visual loss. Brain 1977; 100: 563–579
  • Regan D., Giaschi D., Sharpe J. A., Hong X. H. Visual processing of motion-defined form: Selective failure in patients with parieto-temporal lesions. Journal of Neuroscience 1992; 12: 2198–2210
  • Regan D., Whitlock J. A., Murray T. J., Beverley K. I. Orientation specific losses of contrast sensitivity in multiple sclerosis. Investigative Ophthalmology and Visual Science 1980; 19: 324–328
  • Regan D., Schellart N. A. M., Spekreijse H., Van den Berg T. J. T. P. Photometry in goldfish by electrophysiological recording: comparison of criterion response method with heterochromatic flicker photometry. Vision Research 1975; 15: 799–807
  • Regan M. P., Regan D. Monocular and binocular nonlinearities in flicker evoked potentials. Third International Evoked Potential Symposium, Berlin, 1986, (abstracts)
  • Regan M. P., Regan D. A frequency domain technique for characterizing nonlinearities in biological systems. Journal of Theoretical Biology 1988; 133: 293–317
  • Regan M. P., Regan D. Objective investigation of visual function using a nondestructive zoom-FFT technique for evoked potential analysis. Canadian Journal of Neurological Science 1989; 16: 168–179
  • Shapley R. M., Perry V. H. Cat and monkey retinal ganglion cells and their visual functional roles. Trends in Neuroscience 1986; 9: 229–235
  • Sokol S. Measurement of infant visual acuity form pattern reversal evoked potentials. Vision Research 1978; 18: 33–41
  • Spekreijse H., Van der Tweel L. H., Regan D. Intraocular sustained suppression: correlations with evoked potential amplitude and distribution. Vision Research 1972; 12: 521–526
  • Swift D. J., Smith R. An action spectrum for spatial frequency adaptation. Vision Research 1982; 22: 235
  • Switkes E., Bradley A., De Valois K. K. Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. Journal of the Optical Society of America 1988; 5A: 1149–1162
  • Towle V. L., Harter M. R., Previc F. H. Binocular interaction of orientation and spatial frequency channels: evoked potentials and observer sensitivity. Perception and Psychophysics 1980; 27: 351–360
  • Tyler C. W. Depth perception in disparity gratings. Nature 1974; 25: 140–142
  • Webster M. A., De Valois K. K., Switkes E. Orientation and spatial frequency discrimination for luminance and chromatic gratings. Journal of the Optical Society of America 1990; 7A: 1034–1049
  • White C. T. Evoked cortical potentials and patterned stimuli. American Psychology 1969; 24: 212–214
  • White C. T., Eason R. G. Evoked cortical potentials in relation to certain aspects of visual perception. Psychology Monographs 1966; 80(No. 24)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.