4
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Weak Electromagnetic Fields Increase the Amplitude of the Pattern Reversal VEP Response in Patients with Multiple Sclerosis

Pages 79-91 | Received 08 Aug 1995, Published online: 07 Jul 2009

References

  • Aldegunde M., Miguez I., Veira J. Effects of pinealectomy on regional brain serotonin metabolism. International Journal of Neuroscience 1985; 26: 9–13
  • Ames A., Pollen L. A. Neurotransmission in central nervous tissue: a study of isolated rabbit retina. Journal of Neurophysiology 1969; 32: 424–442
  • Anton-Tay F., Chou C., Anton S., Wurtman R. J. Brain serotonin concentration: elevation following intraperitoneal administration of melatonin. Science 1968; 162: 227–278
  • Asselman P., Chadwick D. W., Marsden C. D. Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis. Brain 1975; 98: 261–282
  • Baumgarten H. G., Lachenmayer L. Anatomical features and physiological properties of central serotonin neurons. Pharmacopsychiatrie 1985; 18: 180–187
  • Bawin S. M., Adey W. R. Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proceedings of the National Academy of Sciences, USA 1976; 73, 1999–2003
  • Bell G., Marino A., Chesson A., Struve F. Electrical states in the rabbit brain can be altered by light and electromagnetic fields. Brain Research 1992; 570: 307–315
  • Bever C. T., Leslie J., Camenga D. L., Panitch H. S., Johnson K. P. Preliminary trial of 3, 4-di-aminopyridine in patients with multiple sclerosis. Annals of Neurology 1990; 27: 421–427
  • Bhaskar P. A., Vanchilingam S., Bhaskar A., Devaprabhu A., Ganesan R. A. Effect of L-dopa on visual evoked potential in patients with Parkinson's disease. Neurology 1986; 36: 1119–1121
  • Blackman C. F. Stimulation of brain tissue in vitro by extremely low frequency, low intensity, sinusoidal electromagnetic fields. Electromagnetic fields and neurobehav-ioral function, M. E. O'Connor, R. H. Lovely. Alan R. Liss, New York 1988
  • Bodis-Wollner I., Onofrj M. The visual system in Parkinson's disease. Advances in neurology, M. D. Yahr, K. J. Bergmann. Raven Press, New York 1986; 323–327
  • Bodis-Wollner I., Yahr M. D., Thornton J. Visual evoked potentials and the severity of Parkinson's disease. Research progress in parkinson's disease, F. C. Rose, R. Capildeo. Pitman Medical, Kent 1980; 126–146
  • Bodis-Wollner I., Yahr M. D., Mylin L., Thornton J. Dopaminergic deficiency and delayed visual evoked potentials in humans. Annals of Neurology 1982; 11: 478–483
  • Bostock H., Sears T. A. The internodal axon membrane: electrical excitability and continous conduction in segmental demyelination. Journal of Physiology 1978; 227: 323–350
  • Bostock H., Sherratt R. M., Sears T. A. Overcoming conduction failure in demyelinated nerve fibers by prolonging action potentials. Nature 1978; 274: 385–387
  • Bradbury A. J., Kelly M. E., Smith J. A. Melatonin action in the mid-brain can regulate dopamine function both behaviourally and biochemically. The pineal gland: endocrine aspects, G. M. Brown, S. D. Wainwright. Pergamon Press, Oxford 1985; 327–332
  • Cardinali D. P. Changes in hypothalamic neurotransmitter uptake following pinealectomy, superior cervical ganglionectomy or melatonin administration to rats. Neuroendocrinology 1975; 19: 91–95
  • Cardinali D. P., Nagle C. A., Freire J. M., Rosner J. M. Effects of melatonin on neurotransmitter uptake and release by synaptosome-rich homogenates of the rat hypothalamus. Neuroendocrinology 1975; 18: 72–85
  • Chiu S. Y., Ritchie J. M. Potassium channels in nodal and internodal axonal membrane of mammalian myelinated fibers. Nature 1980; 284: 170–171
  • Chiu S. Y., Ritchie J. M. On the physiological role of internodal potassium channels and the security of conduction in myelinated nerve fibers. Proceedings of the Royal Society London B Biological Sciences 1984; 220: 415–422
  • Claveria L. E., Curzon G., Harrison M. J. G., Kantamaneni B. D. Amine metabolites in the cerebrospinal fluid of patients with disseminated sclerosis. Journal of Neurology, Neurosurgery and Psychiatry 1974; 57: 715–718
  • Cutler J. R., Aminoff M. J., Brant-Zawadzki M. Evaluation of patients with multiple sclerosis by evoked potentials and magnetic resonance imaging: a comparative study. Annals of Neurology 1986; 20: 645–648
  • Davidson D., Pullar I. A., Mawdsley C, Kinloch N., Yates C. M. Monoamine metabolites in cerebrospinal fluid in multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry 1977; 40: 741–745
  • Dubocovich M. L. Melatonin as a potent modulator of dopamine release in the retina. Nature 1983; 306: 782–784
  • Dyer R. S., Howell W. E., MacPhail R. C. Dopamine depletion slows retinal transmission. Experimental Neurology 1981; 71: 326–340
  • Eason R. G., Harter M. R., White C. T. Effect of attention and arousal on visually evoked cortical potentials and reaction time in man. Physiology & Behavior 1969; 4: 283–289
  • Ehringer B., Floren I. Quantitation of the uptake of indoleamines and dopamine in the rabbit retina. Experimental Eye Research 1978; 26: 1–11
  • Ffrench-Constant C. Pathogenesis of multiple sclerosis. Lancet 1994; 343: 271–275
  • Frederick J. M., Rayborn M. E., Laties A. M., Lam D. M. K., Hollyfield J. G. Dopamine neurons in the human retina. Journal of Comparative Neurology 1982; 210: 65–79
  • Gawel M. J., Das P., Vincent S. Visual and auditory evoked responses in Parkinson's disease. Research progress in parkinson's disease, F. C. Rose, R. Capildeo. Pitman Medical, Kent 1981; 138–146
  • Gottfries C. G., Perris C., Roos B. E. Visual average evoked responses (AER) and monoamine metabolites in cerebrospinal fluid (CSF). Acta Psychiatrica Scandinavica 1974; 255: 135–142, suppl
  • Halliday A. M. Clinical applications of evoked potentials. Recent advances in clinical neurology, W. B. Matthews, G. H. Glaser. Churchill Livingstone, Edinburgh 1978; 47–73
  • Halliday A. M., McDonald W. I. Pathophysiology of demyelinating disease. British Medical Bulletin 1977; 33: 21–27
  • Halliday A. M., McDonald W. I., Mushin J. Delayed visual evoked response in optic neuritis. Lancet 1972; 1: 982–985
  • Halliday A. M., McDonald W. I., Mushin J. Visual evoked potentials in patients with demyelinating disease. New developments in visual evoked potentials in the human brain, J. E. Desmedt. Oxford University Press, London 1977; 438–449
  • Harrer G., Fischbach R. Uber die wirkung bestimmter aminosauren auf das ergebniss des unberwar-mungstests bein multiple sclerose kranken. Journal of Neural Transmission 1973; 34: 205–214
  • Holder G. E., Bartlett J. R., Bridges P. K., Kantamanei B. D., Curzon G. Correlation between transmitter metabolite concentrations in human ventricular cerebrospinal fluid and pattern visual evoked potentials. Brain Research 1980; 188: 582–586
  • Hyyppa M. T., Jolma T., Riekkinen P., Rinne U. K. Effects of L-tryptophan on central indoleamine metabolism and short-lasting neurologic disturbances in multiple sclerosis. Journal of Neural Transmission 1975; 37: 297–304
  • Jaffe R. A., Laszewski B. L., Carr D. B., Phillips R. D. Chronic exposure to a 60-Hz electric field: effects on synaptic transmission and peripheral nerve function in the rat. Bioelectromagnetics 1980; 1: 131–147
  • Johansson B., Ross B. E. 5-hydroxyindoleacetic acid and homovanillic acid in CSF of patients with neurological disease. European Neurology 1977; 11: 37–45
  • Kelly P. H. Drag induced motor behavior. Handbook of psychopharmacology, L. L. Iversen, S. D. Iversen, S. H. Snyder. Plenum, New York 1977; vol. 8: 295–331
  • Kocsis J. D., Waxman S. G., Hildebrand C., Ruiz J. A. Regenerating mammalian nerve fibers: changes in action potential waveform and firing characteristics following blockade of potassium conductance. Proceeedings of the Royal Society London B Biological Sciences 1982; 217: 77–87
  • Kopell B. S., Winner W. K., Warwick G. L. The effects of stimulus differences, light intensity and selective attention on the amplitude of the visual averaged evoked potential in man. Electroencephalography and Clinical Neurophysiology 1969; 26: 619–622
  • Lennon V. A., Carnegie P. R. Immunopharmacological disease: a break in tolerance to receptor sites. Lancet 1971; 2: 630–633
  • Luca N., Hategan D. Determination of serotonin content and ceruloplasmin activity of blood and CSF amino acid level in multiple sclerosis. Revue Roumania Medica Neurologica Psychiatrica 1986; 24: 153–159
  • Miguez J. M., Martin F., Aldegunde M. Differential effects of pinealectomy on amygdala and hippocampus serotonin metabolism. Journal of Pineal Research 1991a; 10: 100–103
  • Miguez J. M., Martin F., Aldegunde M. Long-term pinealectomy alters hypothalamic serotonin metabolism in the rat. Journal of Pineal Research 1991b; 11: 75–79
  • Miledi R. Transmitter release induced by injection of calcium ions into nerve terminals. Proceedings of the Royal Society of Biological Sciences 1973; 183: 421–428
  • Moszkowska A., Kordon C., Ebels I. Biochemical fractions and mechanisms involved in the pineal modulation of pituitary gonadotropin release. The pineal gland, G. E. W. Wolstenholme, J. Knight. Churchill-Livingstone, London 1971; 241–258
  • Olcese J. M. Magnetoreception in rodents: involvement of the eyes and the pineal organ may be evidence for a chronobiological substrate. Electromagnetic fields and circadian rhythmicity, M. C. Moore-Ede, S. S. Campbell, R. J. Reiter. Birkhauser, Boston 1992; 63–73
  • Onofrj M., Bodis-Wollner I. Dopaminergic deficiency causes delayed visual evoked potentials in rats. Annals of Neurology 1982; 11: 484–490
  • Onofrj M., Bazzano S., Malatesta G., Gambi D. Pathophysiology of delayed evoked potentials in multiple sclerosis. Functional Neurology 1990; 5: 301–319
  • Pellegrino R. G., Ritchie J. M. Sodium channels in the axolemma of normal and degenerating rabbit optic nerve. Proceedings of the Royal Society London B Biological Sciences 1984; 222: 155–160
  • Redmond D. E., Borge G. F., Buchsbaum M., Maas J. W. Evoked potential studies of brain catecholamine alterations in monkeys. Journal of Psychiatric Research 1975; 12: 97–116
  • Reichardt L. F., Kelly R. B. A molecular description of nerve terminal function. Annual Review of Biochemistry 1983; 52: 871–926
  • Reiter R. J. Changes in circadian melatonin synthesis in the pineal gland of animals exposed to extremely low frequency electromagnetic radiation: A summary of observations and speculation on their implications. Electromagnetic fields and circadian rhythmicity, M. C. Moore-Ede, S. S. Campbell, R. J. Reiter. Birkhauser, Boston 1992; 13–27
  • Rinaldi P., Sutko M., Mahnke J. H., Verzeano M. Serotonin in the lateral geniculate body. Physiology & Behavior 1975; 14: 95–102
  • Ritchie J. M., Rogart R. B. Density of sodium channels in mammalian myelinated nerve fibers and nature of the axonal membrane under the myelin sheath. Proceedings of the National Academy of Sciences, USA 1977; 74: 211–215
  • Rosen A. D., Lubowsky J. Magnetic field influence on central nervous system function. Experimental Neurology 1987; 95: 679–687
  • Saavedra J. M. Distribution of serotonin and synthesizing enzymes in discrete areas of the brain. Federation Proceedings 1977; 36: 2134–2141
  • Sandyk R. Successful treatment of multiple sclerosis with magnetic fields. International Journal of Neuroscience 1992; 66: 237–250
  • Sandyk R. Demyelination as an epiphenomenon in multiple sclerosis. International Journal of Neuroscience 1993; 72: 141–148
  • Sandyk R. Rapid normalization of visual evoked potentials by picotesla range magnetic fields in chronic progressive multiple sclerosis. International Journal of Neuroscience 1994; 77: 243–259
  • Sandyk R. Chronic relapsing multiple sclerosis: a case of rapid recovery by application of weak electromagnetic fields. Inter J Neuroscience 1995; 82: 223–242
  • Sandyk R. Long term beneficial effects of weak electromagnetic fields in multiple sclerosis. International Journal of Neuroscience, in press
  • Sandyk R., Derpapas K. Magnetic fields normalize visual and brainstem auditory evoked potentials in multiple sclerosis. International Journal of Neuroscience 1993a; 68: 241–253
  • Sandyk R., Derpapas K. Successful treatment of an acute exacerbation of multiple sclerosis by external magnetic fields. International Journal of Neuroscience 1993b; 70: 97–105
  • Sandyk R., Iacono R. P. Resolution of longstanding symptoms of multiple sclerosis by application of picotesla range magnetic fields. International Journal of Neuroscience 1993; 70: 255–269
  • Sandyk R., Iacono R. P. Improvement by picotesla magnetic fields of perceptual-motor performance in a patient with chronic progressive multiple sclerosis. International Journal of Neuroscience 1994; 78: 53–66
  • Schmidt R. F. Grundriss der neurophysiologie. Springer-Verlag, Berlin 1972; 83–87
  • Semm P. Neurobiological investigations on the magnetic sensitivity of the pineal gland in rodents and pigeons. Comparative Biochemistry and Physiology 1983; 76A: 683–689
  • Semm P. Pineal function in mammals and birds is altered by earth-strengh magnetic fields. Electromagnetic fields and circadian rhythmicity, M. C. Moore-Ede, S. S. Campbell, R. J. Reiter. Birkhauser, Boston 1992; 53–62
  • Shahrokhi F., Chiappa K. H., Young R. R. Pattern shift visual evoked responses in 200 patients with optic neuritis and/or multiple sclerosis. Archives of Neurology 1978; 35: 65–71
  • Sibley W. A. Therapeutic claims in multiple sclerosis. Demos Publications, New York 1992; 15
  • Smith K. J., Bostock H., Hall S. M. Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidylcholine. Journal of Neurological Sciences 1982; 54: 13–31
  • Sokol S. Visual evoked potentials. Electrodiagnosis in clinical neurology, M. J. Aminoff. Churchill Livingstone, New York 1980; 348–369
  • Sonninen V., Riekkinen P., Rinne U. K. Acid monoamine metabolites in cerebrospinal fluid in multiple sclerosis. Neurology 1973; 23: 760–763
  • Tabaddor K., Wolfson L. I., Sharpless N. S. Ventricular fluid homovanillic acid and 5-hydroxyin-doleacetic acid concentrations in patients with movement disorders. Neurology 1978; 28: 1249–1253
  • Targ E. F., Kocsis J. D. 4-aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve. Brain Research 1985; 328: 358–361
  • Temaux J. P., Hery F., Bourgoin S., Adrien J., Glowinski J., Hamon M. The topographical distribution of serotonergic terminals in the neostriatum of the rat and caudate nucleus of the cat. Brain Research 1977; 121: 311–326
  • Thomas T. N., Redbum D. A. 5-hydroxytryptamine- a neurotransmitter of bovine retina. Experimental Eye Research 1979; 28: 55–61
  • Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiologica Scandinavica 1971; 397: 1–48, suppl
  • Van Diemen H. A. M., Polman C. H., Van Oongen M. M. M. M., Nauta J. J. P., Strijers R. L. M., Van Loenen A. C, Bertelsmann F. W., Koetsier J. C. 4-aminopyridine induces functional improvement in multiple sclerosis patients: a neuropsychiological study. Journal of the neurological Sciences 1993; 116: 220–226
  • Van Dongen M. M. M. M., Bertelsmann F. W., Polman C. H. Sensitivity of eye movement registration and evoked potentials in evaluation of therapy in patients with multiple sclerosis. Journal of Neurological Sciences 1991; 102: 25–31
  • Waxman S. G. Conduction in myelinated, unmyelinated and demyelinated fibers. Archives of Neurology 1977; 34: 585–589
  • Waxman S. G., Ritchie J. M. Molecular dissection of the myelinated axon. Annals of Neurology 1993; 33: 121–136
  • Welker H. A., Semm P., Willig R. P., Commentz J. C, Wiltschko W., Vollrath L. Effects of an artificial magnetic field on serotonin N-acetyltransferase activity and melatonin content of the rat pineal gland. Experimental Brain Research 1983; 50: 426–432
  • Wilson B. W., Chess E. K., Anderson L. E. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery. Bioelectromagnetics 1986; 7: 239–242
  • Wilson B. W., Stevens R. G., Anderson L. E. Neuroendocrine mediated effects of electromagnetic field exposure: possible role of the pineal gland. Life Sciences 1989; 45: 1319–1332
  • Wilson B. W., Stevens R. G., Anderson L. E. Effects of electromagnetic field exposure on neuroendocrine function. Electromagnetic fields and circadian rhythmicity, M. C. Moore-Ede, S. S. Campbell, R. J. Reiter. Birkhauser, Boston 1992; 29–50
  • Zeise M. L., Semm P. Melatonin lowers excitability of guinea pig hippocampal neurons in vitro. Journal of Comparative Physiology 1985; 157: 23–29
  • Zisapel N., Laudon M. Inhibition by melatonin of dopamine release from rat hypothalamus: regulation of calcium entry. Brain Research 1983; 272: 378–381
  • Zisapel N., Egozi Y., Laudon M. Inhibition of dopamine release by melatonin: regional distribution in the rat brain. Brain Research 1982; 246: 161–163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.