2,228
Views
112
CrossRef citations to date
0
Altmetric
Review

Mechanisms of initiation and progression of intestinal fibrosis in IBD

, , , &
Pages 53-65 | Received 03 Sep 2014, Accepted 19 Sep 2014, Published online: 19 Dec 2014

References

  • JCosnes, CGower-Rousseau, PSeksik, ACortot. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011;140:1785–94.
  • GLatella, CPapi. Crucial steps in the natural history of inflammatory bowel disease. World J Gastroenterol 2012;18:3790–9.
  • CFiocchi, PKLund. Themes in fibrosis and gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2011;300:G677–83.
  • FRieder, CFiocchi. Mechanisms of tissue remodeling in inflammatory bowel disease. Dig Dis 2013;31:186–93.
  • FRieder, CFiocchi. Intestinal fibrosis in IBD-a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol 2009;6:228–35.
  • JPBurke, JJMulsow, CO’Keane, NGDocherty, RWWatson, PRO’Connell. Fibrogenesis in Crohn’s disease. Am J Gastroenterol 2007;102:439–48.
  • FRieder, EMZimmermann, FHFeza H Remzi, WJSandborn. Crohn’s disease complicated by strictures: a systematic review. Gut 2013;62:1072–84.
  • ICLawrance, LMaxwell, WFDoe. Inflammation location, but not type, determines the increase in TGFb-1 and IGF-1 expression and collagen deposition in IBD intestine. Inflamm Bowel Dis 2001;7:16–26.
  • LOGordon, NAgrawal, JRGoldblum, CFiocchi, FRieder. Fibrosis in ulcerative colitis – mechanisms, features and consequences of a neglected problem. Inflamm Bowel Dis 2014; In Press.
  • MGazouli, IPachoula, IPanayotou, GMantzaris, GChrousos, NPAnagnou, et al. NOD2/CARD15, ATG16L1 and IL23R gene polymorphisms and childhood-onset of Crohn’s disease. World J Gastroenterol 2010;16:1753–8.
  • TAWynn, TRRamalingam. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012;18:1028–40.
  • SSpeca, IGiusti, FRieder, GLatella. Cellular and molecular mechanisms of intestinal fibrosis. World J Gastroenterol 2012;18:3635–61.
  • FRieder, TKarrasch, SBen-Horin, ASchirbel, REhehalt, JWehkamp, et al. Results of the 2nd scientific workshop of the ECCO (III): basic mechanisms of intestinal healing. J Crohns Colitis 2012;6:373–85.
  • JCosnes, INion-larmurier, LBeaugerie, PAfchain, ETiret, JPGendre. Impact of the increasing use of immunosuppressants in Crohn’s disease on the need for intestinal surgery. Gut 2005;54:237–41.
  • EAngelucci, MCesarini, PGentile, SNecozione, GFieri, RCaprilli, et al. Available medical therapies do not affect development of major complications and need for surgery in Crohn’s isease: Long-term prospective study on a population of 193 consecutive patients. J Crohns Colitis 2011;5:S120–1.
  • GLatella, RSferra, SSpeca, SVetuschi, EGaudio. Can we prevent, reduce or reverse intestinal fibrosis in IBD? Eur Rev Med Pharmacol Sci 2013;17:1283–304.
  • FRieder, JRde Bruyn, BTPham, KKatsanos, VAnnese, PDHiggins, et al. Results of the 4th Scientific Workshop of the ECCO (Group II): Markers of intestinal fibrosis in inflammatory bowel disease. J Crohns Colitis 2014;10.1016/j.crohns.2014.03.009; Epub ahead of print.
  • JLi, SJQiu, WMShe, FPWang, HGao, LLi, et al. Significance of the balance between regulatory T (Treg) and T helper 17 (Th17) cells during hepatitis B virus related liver fibrosis. PLoS One 2012;7:e39307.
  • GLatella, GRogler, GBamias, CBreynaert, JFlorholmen, GPellino, et al. Results of the 4th scientific workshop of the ECCO (I): Pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis 2014;10.1016/j.crohns.2014.03.008; Epub ahead of print.
  • GLakatos, IHritz, MZVarga, MJuhász, PMiheller, GCierny, et al. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis 2012;30:289–95.
  • JLuna, MCMasamunt, ICLawrance, MSans. Mesenchymal cell proliferation and programmed cell death: key players in fibrogenesis and new targets for therapeutic intervention. Am J Physiol Gastrointest Liver Physiol 2011;300:G703–8.
  • FRieder, ICLawrance, ALeite, MSans. Predictors of fibrostenotic Crohn’s disease. Inflamm Bowel Dis 2011;17:2000–7.
  • ADi Sabatino, CLJackson, KMPickard, MBuckley, LRovedatti, NALeakey, et al. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut 2009;58:777–89.
  • SFichtner-Feigl, CAYoung, AKitani, EKGeissler, HJSchlitt, WStrober. IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology 2008;135:2003–13.
  • FRieder, SKessler, MSans, CFiocchi. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol 2012;303:G786–801.
  • BAVallance, MIGunawan, BHewlett, PBercik, CVan Kampen, FGaleazzi, et al. TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol 2005;289:G116–28.
  • GLatella, AVetuschi, RSferra, GZanninelli, AD’Angelo, VCatitti, et al. Smad3 loss confers resistance to the development of trinitrobenzene sulfonic acid-induced colorectal fibrosis. Eur J Clin Invest 2009;39:145–56.
  • ABKulkarni, CGHuh, DBecker, AGeiser, MLyght, KCFlanders, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993;90:770–4.
  • MNomura, ELi. Smad2 role in mesoderm formation, left-right patterning and craniofacial development. Nature 1998;393:786–90.
  • XYang, CLi, XHu, CDeng. The tumor suppressor Smad4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci USA 1998;95:3667–72.
  • RAPanganiban, RMDay. Hepatocyte growth factor in lung repair and pulmonary fibrosis. Acta Pharmacol Sin 2011;32:12–20.
  • RWeiskirchen, SKMeurer, OAGressner, JHerrmann, EBorkham-Kamphorst, AMGressner. BMP-7 as antagonist of organ fibrosis. Front Biosci(Landmark Ed) 2009;14:4992–5012.
  • KBaghy, RVIozzo, IKovalszky. Decorin-TGFβ axis in hepatic fibrosis and cirrhosis. J Histochem Cytochem 2012;60:262–8.
  • GLatella, AVetuschi, RSferra, SSpeca, EGaudio. Localization of αvβ6 integrin-TGF-β1/Smad3, mTOR and PPARγ in experimental colorectal fibrosis. Eur J Histochemistry 2013;57:271–7.
  • TRKatsumoto, SMViolette, DSheppard. Blocking TGFβ via inhibition of the αvβ6 integrin: a possible therapy for systemic sclerosis interstitial lung disease. Int J Rheumatol 2011;2011:208219.
  • CKTsang, HQi, LFLiu, XFZheng. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 2007;12:112–24.
  • SWang, MCWilkes, EBLeof, RHirschberg. Noncanonical TGF-beta pathways, mTORC1 and Abl, in renal interstitial fibrogenesis. Am J Physiol Renal Physiol 2010;298:F142–9.
  • DCMassey, FBredin, MParkes. Case report Use of sirolimus (rapamycin) to treat refractory Crohn’s disease. Gut 2008;57:1294–6.
  • JDumortier, MGLapalus, OGuillaud, GPoncet, MCGagnieu, CPartensky, et al. Everolimus for refractory Crohn’s disease: a case report. Inflamm Bowel Dis 2008;14:874–7.
  • WReinisch, JPanés, MLémann, SSchreiber, BFeagan, SSchmidt, et al. A multicenter, randomized, double-blind trial of everolimus versus azathioprine and placebo to maintain steroid-induced remission in patients with moderate-to-severe active Crohn’s disease. Am J Gastroenterol 2008;103:2284–92.
  • AAkhmetshina, KPalumbo, CDees, CBergmann, PVenalis, PZerr, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 2012;3:735.
  • BWu, SPCrampton, CCHughes. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 2007;26:227–39.
  • WRHendersonJr, EYChi, XYe, CNguyen, YTTien, BZhou, et al. Inhibition of Wnt/beta-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci USA 2010;107:14309–14.
  • AHorn, KPalumbo, CCordazzo, CDees, AAkhmetshina, MTomcik, et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum 2012;64:2724–33.
  • SLFabian, RRPenchev, BSt-Jacques, ANRao, PSipilä, KAWest, et al. Hedgehog-Gli pathway activation during kidney fibrosis. Am J Pathol 2012;180:1441–53.
  • AHorn, TKireva, KPalumbo-Zerr, CDees, MTomcik, CCordazzo, et al. Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Ann Rheum Dis 2012;71:785–9.
  • TLiu, BHu, YYChoi, MChung, MUllenbruch, HYu, et al. Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol 2009;174:1745–55.
  • BBielesz, YSirin, HSi, TNiranjan, AGruenwald, SAhn, et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J Clin Invest 2010;120:4040–54.
  • YChen, SZheng, DQi, SZheng, JGuo, SZhang, et al. Inhibition of notch signaling by a c-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS One 2012;7:e46512.
  • YJin, KRatnam, PYChuang, YFan, YZhong, YDai, et al. A systems approach identifies HIPK2 as a key regulator of kidney fibrosis. Nat Med 2012;18:580–8.
  • JEGhia, NLi, HWang, MCollins, YDeng, RTEl-Sharkawy, et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 2009;137:1649–60.
  • DAMann, FOakley. Serotonin paracrine signaling in tissue fibrosis. Biochimica et Biophysica Acta 2013;1832:905–10.
  • AFabre, JMarchal-Sommé, SMarchand-Adam, CQuesnel, RBorie, MDehoux, et al. Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. Eur Respir J 2008;426–36.
  • YHamasaki, KDoi, RMaeda-Mamiya, EOgasawara, DKatagiri, TTanaka, et al. A 5-hydroxytryptamine receptor antagonist, sarpogrelate, reduces renal tubulointerstitial fibrosis by suppressing PAI-1. Am J Physiol Renal Physiol 2013;305:F1796–803.
  • GYZhang, TCheng, MHZheng, CGYi, HPan, ZJLi, et al. Activation of peroxisome proliferator-activated receptor-gamma inhibits transforming growth factor-beta1 induction of connective tissue growth factor and extracellular matrix in hypertrophic scar fibroblasts in vitro. Arch Dermatol Res 2009;301:515–22.
  • FZhang, YLu, SZheng. Peroxisome proliferator-activated receptor-γ cross-regulation of signaling events implicated in liver fibrogenesis. Cell Signal 2012;24:596–605.
  • MKapoor, MMcCann, SLiu, KHuh, CPDenton, DJAbraham, et al. Loss of peroxisome proliferator-activated receptor gamma in mouse fibroblasts results in increased susceptibility to bleomycin-induced skin fibrosis. Arthritis Rheum 2009;60:2822–9.
  • CPirat, AFarce, NLebègue, NRenault, CFurman, RMillet, et al. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J Med Chem 2012;55:4027–61.
  • SSpeca, CRousseaux, CDubuquoy, AVetuschi, RSferra, BBertin, et al. GED-0507-34 Levo, a novel modulator of PPARgamma as new therapeutic strategy in the treatment of intestinal fibrosis. J Crohn Colitis 2013;7:S31–2.
  • KKarmiris, IEKoutroubakis, EAKouroumalis. Leptin, adiponectin, resistin, and ghrelin-implications for inflammatory bowel disease. Mol Nutr Food Res 2008;52:855–66.
  • CFink, IKaragiannides, KBakirtzi, CPothoulakis. Adipose tissue and inflammatory bowel disease pathogenesis. Inflamm Bowel Dis 2012;18:1550–7.
  • TYamauchi, MIwabu, MOkada-Iwabu, TKadowaki. Adiponectin receptors: a review of their structure, function and how they work. Best Pract Res Clin Endocrinol Metab 2014;28:15–23.
  • FMarra, NNavari, EVivoli, SGalastri, AProvenzano. Modulation of liver fibrosis by adipokines. Dig Dis 2011;29:371–6.
  • SMizuno, KMatsumoto, TNakamura. HGF as a renotrophic and anti-fibrotic regulator in chronic renal disease. Front Biosci 2008;13:7072–86.
  • SChakraborty, PChopra, AHak, SGDastidar, ARay. Hepatocyte growth factor is an attractive target for the treatment of pulmonary fibrosis. Expert Opin Investig Drugs 2013;22:499–515.
  • RWeiskirchen, SKMeurer. BMP-7 counteracting TGF-beta1 activities in organ fibrosis. Front Biosci (Landmark Ed) 2013;18:1407–34.
  • WRBi, GTXu, LXLv, CQYang. The ratio of transforming growth factor-β1/bone morphogenetic protein-7 in the progression of the epithelial-mesenchymal transition contributes to rat liver fibrosis. Genet Mol Res 2014;13:1005–14.
  • MZeisberg, JHanai, HSugimoto, TMammoto, DCharytan, FStrutz, et al. BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 2003;9:964–8.
  • HSugimoto, VSLeBleu, DBosukonda, PKeck, GTaduri, WBechtel, et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat Med 2012;18:396–404.
  • DPan. The hippo signaling pathway in development and cancer. Dev Cell 2010;19:491–505.
  • XVarelas, PSamavarchi-Tehrani, MNarimatsu, AWeiss, KCockburn, BGLarsen, et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell 2010;19:831–44.
  • MImajo, KMiyatake, AIimura, AMiyamoto, ENishida. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J 2012;31:1109–22.
  • YTLin, JYDing, MYLi, TSYeh, TWWang, JYYu. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res 2012;318:1877–88.
  • MKuro-o. Klotho in health and disease. Curr Opin Nephrol Hypertens 2012;21:362–8.
  • SDoi, YZou, OTogao, JVPastor, GBJohn, LWang, et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J Biol Chem 2011;286:8655–65.
  • LZhou, YLi, DZhou, RJTan, YLiu. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J Am Soc Nephrol 2013;24:771–85.
  • PSimic, EOWilliams, ELBell, JJGong, MBonkowski, LGuarente. SIRT1 suppresses the epithelial-to-mesenchymal transition in cancer metastasis and organ fibrosis. Cell Rep 2013;3:1175–86.
  • YWang, XShi, JQi, XLi, KUray, XGuan. SIRT1 inhibits the mouse intestinal motility and epithelial proliferation. Am J Physiol Gastrointest Liver Physiol 2012;302:G207–17.
  • XJiang, ETsitsiou, SEHerrick, MALindsay. MicroRNAs and the regulation of fibrosis. FEBS J 2010;277:2015–21.
  • JRPekow, JHKwon. MicroRNAs in inflammatory bowel disease. Inflamm Bowel Dis 2012;18:187–93.
  • YChen, WGe, LXu, CQu, MZhu, WZhang, et al. miR-200b is involved in intestinal fibrosis of Crohn’s disease. Int J Mol Med 2012;29:601–6.
  • ARavi, PGarg, SVSitaraman. Matrix metalloproteinases in inflammatory bowel disease: boon or a bane? Inflamm Bowel Dis 2007;13:97–107.
  • SLPender. Do metalloproteinases contribute to tissue destruction or remodeling in the inflamed gut? Inflamm Bowel Dis 2008;14:S136–7.
  • KJGreenlee, ZWerb, EReenle, ZWerb, FKheradmand. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 2007;87:69–98.
  • ICLawrance, FWu, AZALeite, JWillis, GAWest, et al. A murine model of chronic-inflammation-induced intestinal fibrosis down-regulated by antisense NF-kB Gastroenterology. 2003;125:1750–61.
  • CStrup-Perrot, DMathé, CLinard, DViolot, FMilliat, AFrançois, et al. Global gene expression profiles reveal an increase in mRNA levels of collagens, MMPs, and TIMPs in late radiation enteritis. Am J Physiol Gastrointest Liver Physiol 2004;287:G875–85.
  • KPSingh, HCGerard, APHudson, DLBoros. Differential expression of collagen, MMP, TIMP and fibrogenic-cytokine genes in the granulomatous colon of Schistosoma mansoniinfected mice. Ann Trop Med Parasitol 2006;100:611–20.
  • ALClutterbuck, KEAsplin, PHarris, DAllaway, AMobasheri. Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets 2009;10:1245–54.
  • ASpinelli, CCorreale, HSzabo, MMontorsi. Intestinal fibrosis in Crohn’s disease: medical treatment or surgery? Curr Drug Targets 2010;11:242–8.
  • GLatella, RCaprilli, STravis. In favour of early surgery in Crohn’s disease: a hypothesis to be tested. J Crohn Colitis 2011;5:1–4.
  • RCaprilli, GLatella, GFrieri. Treatment of inflammatory bowel diseases: to heal the wound or to heal the sick? J Crohns Colitis 2012;6:621–5.
  • ADignass, Gvan Assche, JOLindsay, MLémann, JSöderholm, JFColombel, et al. European Crohn’s and Colitis Organisation (ECCO). The second European evidencebased consensus on the diagnosis and management of Crohn’s disease: Current management. J Crohn Colitis 2010;4:28–62.
  • RSamimi, MHFlasar, SKavic, KTracy, RKCross. Outcome of medical treatment of stricturing and penetrating Crohn’s disease: a retrospective study. Inflamm Bowel Dis 2010;16:1187–94.
  • SBHanauer, BGFeagan, GRLichtenstein, LFMayer, SShreiber, JFColombel, et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 2002;359:1541–9.
  • GRLichtenstein, SYan, MBala, MBlank, BESands. Infliximab maintenance treatment reduces hospitalizations, surgeries, and procedures in fistulizing Crohn’s disease. Gastroenterology 2005;128:862–9.
  • FSchnitzler, HFidder, MFerrante, MNoman, IArijs, Gvan Assche, et al. Long-term outcome of treatment with infliximab in 614 patients with Crohn’s disease: results from a single-centre cohort. Gut 2009;58:492–500.
  • GBouguen, LPeyrin-biroulet. Surgery for adult Crohn’s disease: what is the actual risk? Gut 2011;60:1178–81.
  • DBettenworth, FRieder. Medical therapy of stricturing Crohn’s disease: what the gut can learn from other organs - a systematic review. Fibrogenesis Tissue Repair 2014;7:5.
  • IKoboziev, FKarlsson, SZhang, MBGrisham. Pharmacological intervention studies using mouse models of the inflammatory bowel diseases: translating preclinical data into new drug therapies. Inflamm Bowel Dis 2011;17:1229–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.