804
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Primary sclerosing cholangitis – the Norwegian experience

, &
Pages 781-796 | Received 10 Mar 2015, Accepted 10 Mar 2015, Published online: 12 Apr 2015

References

  • GMHirschfield, THKarlsen, KDLindor, DHAdams. Primary sclerosing cholangitis. Lancet 2013;382:1587–99.
  • TScholz, THKarlsen, TSanengen, ESchrumpf, et al. [Liver transplantation in Norway through 25 years]. Tidsskr Nor Laegeforen 2009;129:2587–92.
  • KBjoro, BBrandsaeter, AFoss, ESchrumpf. Liver transplantation in primary sclerosing cholangitis. Semin Liver Dis 2006;26:69–79.
  • BBrandsaeter, SFriman, UBroomé, HIsoniemi, MOlausson, LBäckman, et al. Outcome following liver transplantation for primary sclerosing cholangitis in the Nordic countries. Scand J Gastroenterol 2003;38:1176–83.
  • CEEHoffman. Verschluss der Gallenwege durch Verdickung der Wandungen. Arch Pathol Anat Physiol 1867;39:206–15.
  • ESchrumpf, KElgjo, OFausa, EGjone, FKolmannskog, SRitland. Sclerosing cholangitis in ulcerative colitis. Scand J Gastroenterol 1980;15:689–97.
  • RWChapman, BAArborgh, JMRhodes, JASummerfield, RDick, PJScheuer, et al. Primary sclerosing cholangitis: a review of its clinical features, cholangiography, and hepatic histology. Gut 1980;21:870–7.
  • RHWiesner, NFLaRusso. Clinicopathologic features of the syndrome of primary sclerosing cholangitis. Gastroenterology 1980;79:200–6.
  • AEBerstad, LAabakken, HJSmith, SAasen, KMBoberg, ESchrumpf. Diagnostic accuracy of magnetic resonance and endoscopic retrograde cholangiography in primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2006;4:514–20.
  • EBjornsson, ROlsson, ABergquist, SLindgren, BBraden, RWChapman, et al. The natural history of small-duct primary sclerosing cholangitis. Gastroenterology 2008;134:975–80.
  • AWee, JLudwig. Pericholangitis in chronic ulcerative colitis: primary sclerosing cholangitis of the small bile ducts? Ann Intern Med 1985;102:581–7.
  • JLudwig. Small-duct primary sclerosing cholangitis. Semin Liver Dis 1991;11:11–17.
  • KMBoberg, ESchrumpf, OFausa, KElgjo, FKolmannskog, THaaland, et al. Hepatobiliary disease in ulcerative colitis. An analysis of 18 patients with hepatobiliary lesions classified as small-duct primary sclerosing cholangitis. Scand J Gastroenterol 1994;29:744–52.
  • NLBerntsen, OKlingenberg, BDJuran, MBenito de Valle, BLindkvist, KNLazaridis, et al. Association Between HLA Haplotypes and Increased Serum Levels of IgG4 in Patients with Primary Sclerosing Cholangitis. Gastroenterology 2015. [Epub ahead of print].
  • THKarlsen, MVesterhus, KMBoberg. Review article: controversies in the management of primary biliary cirrhosis and primary sclerosing cholangitis. Aliment Pharmacol Ther 2014;39:282–301.
  • KMBoberg, RWChapman, GMHirschfield, AWLohse, MPManns, ESchrumpf. International Autoimmune Hepatitis Group. Overlap syndromes: The International Autoimmune Hepatitis Group (IAIHG) position statement on a controversial issue. J Hepatol 2011;54:374–85.
  • KMBoberg, OFausa, THaaland, EHolter, OJMellbye, ASpurkland, et al. Features of autoimmune hepatitis in primary sclerosing cholangitis: an evaluation of 114 primary sclerosing cholangitis patients according to a scoring system for the diagnosis of autoimmune hepatitis. Hepatology 1996;23:1369–76.
  • ESchrumpf, OFausa, OFørre, JHDobloug, SRitland, EThorsby. HLA antigens and immunoregulatory T cells in ulcerative colitis associated with hepatobiliary disease. Scand J Gastroenterol 1982;17:187–91.
  • ASpurkland, SSaarinen, KMBoberg, SMitchell, UBroome, LCaballeria, et al. HLA class II haplotypes in primary sclerosing cholangitis patients from five European populations. Tissue Antigens 1999;53:459–69.
  • THKarlsen, AFranke, EMelum, AKaser, JRHov, TBalschun, et al. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 2010;138:1102–11.
  • THKarlsen, AKaser. Deciphering the genetic predisposition to primary sclerosing cholangitis. Semin Liver Dis 2011;31:188–207.
  • JRHov, KMBoberg, THKarlsen. Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol 2008;14:3781–91.
  • KWiencke, THKarlsen, KMBoberg, EThorsby, ESchrumpf, BALie, et al. Primary sclerosing cholangitis is associated with extended HLA-DR3 and HLA-DR6 haplotypes. Tissue Antigens 2007;69:161–9.
  • KWiencke, ASpurkland, ESchrumpf, KMBoberg. Primary sclerosing cholangitis is associated to an extended B8-DR3 haplotype including particular MICA and MICB alleles. Hepatology 2001;34:625–30.
  • SNaess, BALie, EMelum, MOlsson, JRHov, PJCroucher, et al. Refinement of the MHC risk map in a scandinavian primary sclerosing cholangitis population. PLoS One 2014;9:e114486.
  • THKarlsen, KMBoberg, MVatn, ABergquist, JHampe, ESchrumpf, et al. Different HLA class II associations in ulcerative colitis patients with and without primary sclerosing cholangitis. Genes Immun 2007;8:275–8.
  • THKarlsen, KMBoberg, MOlsson, JYSun, DSenitzer, ABergquist, et al. Particular genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis. J Hepatol 2007;46:899–906.
  • JRHov, VKosmoliaptsis, JATraherne, MOlsson, KMBoberg, ABergquist, et al. Electrostatic modifications of the human leukocyte antigen-DR P9 peptide-binding pocket and susceptibility to primary sclerosing cholangitis. Hepatology 2011;53:1967–76.
  • SNaess, EBjörnsson, JAAnmarkrud, SAl Mamari, BDJuran, KNLazaridis, et al. Small duct primary sclerosing cholangitis without inflammatory bowel disease is genetically different from large duct disease. Liver Int 2014;34:1488–95.
  • JZLiu, JRHov, TFolseraas, EEllinghaus, SMRushbrook, NTDoncheva, et al. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet 2013;45:670–5.
  • DEllinghaus, TFolseraas, KHolm, EEllinghaus, EMelum, TBalschun, et al. Genome-wide association analysis in Primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology 2013;58:1074–83.
  • TFolseraas, EMelum, PRausch, BDJuran, EEllinghaus, AShiryaev, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol 2012;57:366–75.
  • EMelum, AFranke, CSchramm, TJWeismüller, DNGotthardt, FAOffner, et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet 2011;43:17–19.
  • THKarlsen, JHampe, KWiencke, ESchrumpf, EThorsby, BALie, et al. Genetic polymorphisms associated with inflammatory bowel disease do not confer risk for primary sclerosing cholangitis. Am J Gastroenterol 2007;102:115–21.
  • TFolseraas, ELiaskou, CAAnderson, THKarlsen. Genetics in PSC: what do the “risk genes” teach us? Clin Rev Allergy Immunol 2014; Epub ahead of print.
  • EKKHenriksen, et al. Update on primary sclerosing cholangitis genetics. Curr Opin Gastroenterol 2014;30:310–19.
  • THKarlsen, KMBoberg. Update on primary sclerosing cholangitis. J Hepatol 2013;59:571–82.
  • JIrie, YWu, LSWicker, DRainbow, MANalesnik, RHirsch, et al. NOD.c3c4 congenic mice develop autoimmune biliary disease that serologically and pathogenetically models human primary biliary cirrhosis. J Exp Med 2006;203:1209–19.
  • KMBoberg, EAadland, JJahnsen, NRaknerud, MStiris, HBell. Incidence and prevalence of primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis in a Norwegian population. Scand J Gastroenterol 1998;33:99–103.
  • OFausa, ESchrumpf, KElgjo. Relationship of inflammatory bowel disease and primary sclerosing cholangitis. Semin Liver Dis 1991;11:31–9.
  • KKJorgensen, KGrzyb, KELundin, OPClausen, GAamodt, ESchrumpf, et al. Inflammatory bowel disease in patients with primary sclerosing cholangitis: clinical characterization in liver transplanted and nontransplanted patients. Inflamm Bowel Dis 2012;18:536–45.
  • EVLoftusJr, GCHarewood, CGLoftus, WJTremaine, WSHarmsen, ARZinsmeister, et al. PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 2005;54:91–6.
  • WAFaubionJr, EVLoftus, WJSandborn, DKFreese, JPerrault. Pediatric “PSC-IBD”: a descriptive report of associated inflammatory bowel disease among pediatric patients with psc. J Pediatr Gastroenterol Nutr 2001;33:296–300.
  • KKJorgensen, LLindström, MCvancarova, MCastedal, SFriman, ESchrumpf, et al. Colorectal neoplasia in patients with primary sclerosing cholangitis undergoing liver transplantation: a Nordic multicenter study. Scand J Gastroenterol 2012;8-9:1021–9.
  • EAadland, ESchrumpf, OFausa, KElgjo, AHeilo, TAakhus, et al. Primary sclerosing cholangitis: a long-term follow-up study. Scand J Gastroenterol 1987;22:655–64.
  • KMBoberg, GRocca, TEgeland, ABergquist, UBroomé, LCaballeria, et al. Time-dependent Cox regression model is superior in prediction of prognosis in primary sclerosing cholangitis. Hepatology 2002;35:652–7.
  • KMBoberg, SMitchell, UBroome, APares, FRosina, ABergguist, et al. Natural history of primary sclerosing cholangitis. A longterm follow-up study of 394 European primary sclerosing cholangitis patients. J Hepatol 2000;32:32.
  • EMde Vries, UBeuers, CYPonsioen. Biomarkers for disease progression of primary sclerosing cholangitis. Curr Opin Gastroenterol 2015; Epub ahead of print.
  • KMBoberg, ABergquist, SMitchell, APares, FRosina, UBroomé, et al. Cholangiocarcinoma in primary sclerosing cholangitis: risk factors and clinical presentation. Scand J Gastroenterol 2002;37:1205–11.
  • UBroome, RLöfberg, BVeress, LSEriksson. Primary sclerosing cholangitis and ulcerative colitis: evidence for increased neoplastic potential. Hepatology 1995;22:1404–8.
  • UBroome, GLindberg, RLöfberg. Primary sclerosing cholangitis in ulcerative colitis – a risk factor for the development of dysplasia and DNA aneuploidy? Gastroenterology 1992;102:1877–80.
  • KMBoberg, PJebsen, OPClausen, AFoss, LAabakken, ESchrumpf. Diagnostic benefit of biliary brush cytology in cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 2006;45:568–74.
  • KMBoberg, PEbsen, OPClausen, LAabakken, IBrekke, ESchrumpf. Cholangiocarcinoma in situ in primary sclerosing cholangitis: diagnosis by brush cytology and treatment by liver transplantation. J Hepatol 2003;39:453.
  • EMelum, THKarlsen, ESchrumpf, ABergquist, EThorsby, KMBoberg, et al. Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology 2008;47:90–6.
  • KAndresen, KMBoberg, HMVedeld, HHonne, MHektoen, CAWadsworth, et al. Epigenetics 2012;7:1249–57.
  • KAndresen, KMBoberg, HMVedeld, HHonne, PJebsen, MHektoen, et al. Four DNA methylation biomarkers in biliary brush samples accurately identify the presence of cholangiocarcinoma. Hepatology 2015; Epub ahead of print.
  • European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of cholestatic liver diseases. J Hepatol 2009;51:237–67.
  • RChapman, JFevery, AKalloo, DMNagorney, KMBoberg, BShneider, American Association for the Study of Liver Diseases. Diagnosis and management of primary sclerosing cholangitis. Hepatology 2010;51:660–78.
  • KMBoberg, TEgeland, ESchrumpf. Long-term effect of corticosteroid treatment in primary sclerosing cholangitis patients. Scand J Gastroenterol 2003;38:991–5.
  • BBrandsaeter, ESchrumpf, OBentdal, KBrabrand, HJSmith, AAbildgaard, et al. Recurrent primary sclerosing cholangitis after liver transplantation: a magnetic resonance cholangiography study with analyses of predictive factors. Liver Transpl 2005;11:1361–9.
  • BFosby, THKarlsen, EMelum. Recurrence and rejection in liver transplantation for primary sclerosing cholangitis. World J Gastroenterol 2012;18:1–15.
  • ESchrumpf, OFausa, KElgjo, FKolmannskog. Hepatobiliary complications of inflammatory bowel disease. Semin Liver Dis 1988;8:201–9.
  • FKolmannskog, TAakhus, OFausa, ESchrumpf, SRitland, et al. Cholangiographic findings in ulcerative colitis. Acta Radiol Diagn (Stockh) 1981;22:151–7.
  • EBjornsson, KMBoberg, SCullen, KFleming, OPClausen, OFausa, et al. Patients with small duct primary sclerosing cholangitis have a favourable long term prognosis. Gut 2002;51:731–5.
  • JWoodward, JNeuberger. Autoimmune overlap syndromes. Hepatology 2001;33:994–1002.
  • PJJohnson, IGMcFarlane. Meeting report: International Autoimmune Hepatitis Group. Hepatology 1993;18:998–1005.
  • FAlvarez, PABerg, FBBianchi, LBianchi, AKBurroughs, ELCancado, et al. International Autoimmune Hepatitis Group Report: review of criteria for diagnosis of autoimmune hepatitis. J Hepatol 1999;31:929–38.
  • EMHennes, MZeniya, AJCzaja, AParés, GNDalekos, ELKrawitt, et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008;48:169–76.
  • ESinakos, KLindor. Treatment options for primary sclerosing cholangitis. Expert Rev Gastroenterol Hepatol 2010;4:473–88.
  • ROlsson, KMBoberg, OSde Muckadell, SLindgren, RHultcrantz, GFolvik, et al. High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology 2005;129:1464–72.
  • KDLindor, KVKowdley, VALuketic, MEHarrison, TMcCashland, ASBefeler, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 2009;50:808–14.
  • LLindstrom, RHultcrantz, KMBoberg, IFriis-Liby, ABergquist. Association between reduced levels of alkaline phosphatase and survival times of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2013;11:841–6.
  • RMSoetikno, OSLin, PAHeidenreich, HSYoung, MOBlackstone. Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis: a meta-analysis. Gastrointest Endosc 2002;56:48–54.
  • ESchrumpf, KElgjo, OFausa, GHaukenes, DKvale, HRollag. Risk factors in primary sclerosing cholangitis. J Hepatol 1994;21:1061–6.
  • BBrandsaeter, ESchrumpf, OPClausen, AAbildgaard, GHafsahl, KBjøro. Recurrent sclerosing cholangitis or ischemic bile duct lesions – a diagnostic challenge? Liver Transpl 2004;10:1073–4.
  • BBrandsaeter, HIsoniemi, UBroomé, MOlausson, LBäckman, BHansen, et al. Liver transplantation for primary sclerosing cholangitis; predictors and consequences of hepatobiliary malignancy. J Hepatol 2004;40:815–22.
  • EBjornsson, ACederborg, AAkvist, MSimren, POStotzer, IBjarnason. Intestinal permeability and bacterial growth of the small bowel in patients with primary sclerosing cholangitis. Scand J Gastroenterol 2005;40:1090–4.
  • JJahnel, PFickert, CLangner, CHögenauer, DSilbert, JGumhold, et al. Impact of experimental colitis on hepatobiliary transporter expression and bile duct injury in mice. Liver Int 2009;29:1316–25.
  • SNLichtman, EEOkoruwa, JKeku, JHSchwab, RBSartor. Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth. J Clin Invest 1992;90:1313–22.
  • SNLichtman, JKeku, RLClark, JHSchwab, RBSartor. Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology 1991;13:766–72.
  • UNavaneethan, PGVenkatesh, SMukewar, BALashner, FHRemzi, AJMcCullough, et al. Progressive primary sclerosing cholangitis requiring liver transplantation is associated with reduced need for colectomy in patients with ulcerative colitis. Clin Gastroenterol Hepatol 2012;10:540–6.
  • LMarelli, EXirouchakis, GKalambokis, ECholongitas, MIHamilton, AKBurroughs. Does the severity of primary sclerosing cholangitis influence the clinical course of associated ulcerative colitis? Gut 2011;60:1224–8.
  • ESBjornsson, AFKilander, RGOlsson. Bile duct bacterial isolates in primary sclerosing cholangitis and certain other forms of cholestasis–a study of bile cultures from ERCP. Hepatogastroenterology 2000;47:1504–8.
  • ROlsson, EBjörnsson, LBäckman, SFriman, KHöckerstedt, BKaijser, et al. Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers. J Hepatol 1998;28:426–32.
  • GRudolph, DGotthardt, PKlöters-Plachky, HKulaksiz, DRost, AStiehl. Influence of dominant bile duct stenoses and biliary infections on outcome in primary sclerosing cholangitis. J Hepatol 2009;51:149–55.
  • JKatt, DSchwinge, TSchoknecht, AQuaas, ISobottka, EBurandt, et al. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology 2013;58:1084–93.
  • DHAdams, BEksteen. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 2006;6:244–51.
  • BEksteen, JRMora, ELHaughton, NCHenderson, LLee-Turner, et al. Gut homing receptors on CD8 T cells are retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterology 2009;137:320–9.
  • KNeumann, NKruse, BSzilagyi, UErben, CRudolph, AFlach, et al. Connecting liver and gut: murine liver sinusoidal endothelium induces gut tropism of CD4+ T cells via retinoic acid. Hepatology 2012;55:1976–84.
  • ELiaskou, MKarikoski, GMReynolds, PFLalor, CJWeston, NPullen, et al. Regulation of mucosal addressin cell adhesion molecule 1 expression in human and mice by vascular adhesion protein 1 amine oxidase activity. Hepatology 2011;53:661–72.
  • CJWeston, ELShepherd, LCClaridge, PRantakari, SMCurbishley, JWTomlinson, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest 2015;125:501–20.
  • NGRossen, SFuentes, KBoonstra, GRD’Haens, HGHeilig, EGZoetendal, et al. The musosa-associated microbiota of PSC patients is characterized by a low diversity and a low abundance of Uncultured Clostridiales II. J Crohns Colitis; Epub ahead of print.
  • DNAbarbanel, SMSeki, YDavies, NMarlen, JABenavides, KCox, et al. Immunomodulatory effect of vancomycin on treg in pediatric inflammatory bowel disease and primary sclerosing cholangitis. J Clin Immunol 2013;33:397–406.
  • MFarkkila, ALKarvonen, HNurmi, HNuutinen, MTaavitsainen, PPikkarainen, et al. Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: a randomized placebo-controlled trial. Hepatology 2004;40:1379–86.
  • VTremaroli, FBackhed. Functional interactions between the gut microbiota and host metabolism. Nature 2012;489:242–9.
  • SISayin, AWahlström, JFelin, SJäntti, HUMarschall, KBamberg, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013;17:225–35.
  • TKamihira, SShimoda, MNakamura, TYokoyama, YTakii, AKawano, et al. Biliary epithelial cells regulate autoreactive T cells: implications for biliary-specific diseases. Hepatology 2005;41:151–9.
  • SSGlaser, EGaudio, TMiller, DAlvaro, GAlpini. Cholangiocyte proliferation and liver fibrosis. Expert Rev Mol Med 2009;11:e7.
  • DAlvaro, MGMancino, SGlaser, EGaudio, MMarzioni, HFrancis, et al. Proliferating cholangiocytes: a neuroendocrine compartment in the diseased liver. Gastroenterology 2007;132:415–31.
  • EGaudio, BBarbaro, DAlvaro, SGlaser, HFrancis, YUeno, et al. Vascular endothelial growth factor stimulates rat cholangiocyte proliferation via an autocrine mechanism. Gastroenterology 2006;130:1270–82.
  • KNLazaridis, MStrazzabosco, NFLarusso. The cholangiopathies: disorders of biliary epithelia. Gastroenterology 2004;127:1565–77.
  • MStrazzabosco, RFiorotto, SMelero, SGlaser, HFrancis, CSpirli, et al. Differentially expressed adenylyl cyclase isoforms mediate secretory functions in cholangiocyte subpopulation. Hepatology 2009;50:244–52.
  • GAlpini, SRoberts, SMKuntz, YUeno, SGubba, PVPodila, et al. Morphological, molecular, and functional heterogeneity of cholangiocytes from normal rat liver. Gastroenterology 1996;110:1636–43.
  • SCAfford, EHHumphreys, DTReid, CLRussell, VMBanz, YOo, et al. Vascular cell adhesion molecule 1 expression by biliary epithelium promotes persistence of inflammation by inhibiting effector T-cell apoptosis. Hepatology 2014;59:1932–43.
  • MMarzioni, SSaccomanno, LAgostinelli, CRychlicki, SDe Minicis, IPierantonelli, et al. PDX-1/Hes-1 interactions determine cholangiocyte proliferative response to injury in rodents: possible implications for sclerosing cholangitis. J Hepatol 2013;58:750–6.
  • MMarzioni, LAgostinelli, CCandelaresi, SSaccomanno, SDe Minicis, LMaroni, et al. Activation of the developmental pathway neurogenin-3/microRNA-7a regulates cholangiocyte proliferation in response to injury. Hepatology 2014;60:1324–35.
  • MMarzioni, SSaccomanno, CCandelaresi, CRychlicki, LAgostinelli, LTrozzi, et al. Clinical implications of novel aspects of biliary pathophysiology. Dig Liver Dis 2010;42:238–44.
  • THKarlsen, et al. Update on primary sclerosing cholangitis. Dig Liver Dis 2010;42:390–400.
  • JJSmit, AHSchinkel, RPOude Elferink, AKGroen, EWagenaar, Lvan Deemter, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell 1993;75:451–62.
  • ABaghdasaryan, TClaudel, JGumhold, DSilbert, LAdorini, ARoda, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO output. Hepatology 2011;54:1303–12.
  • ABaghdasaryan, TClaudel, JGumhold, DSilbert, SHalsegger, RVolkl, et al. Therapeutic effects of FXR and TGR5 activation in the MDR2 (ABCB4) -/- mouse model of sclerosing cholangitis. J Hepatol 2010;52:S354.
  • EHalilbasic, RFiorotto, PFickert, HUMarschall, TMoustafa, CSpirli, et al. Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2-/- mice. Hepatology 2009;49:1972–81.
  • MTrauner, PFickert, MWagner. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 2007;27:77–98.
  • PFickert, GZollner, AFuchsbichler, CStumptner, AHWeiglein, FLammert, et al. Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 2002;123:1238–51.
  • PGBlanco, MMZaman, OJunaidi, SSheth, RKYantiss, IANasser, et al. Induction of colitis in cftr-/- mice results in bile duct injury. Am J Physiol Gastrointest Liver Physiol 2004;287:G491–6.
  • RFiorotto, RScirpo, MTrauner, LFabris, RHoque, CSpirli, et al. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4-NF-kappaB-mediated inflammatory response in mice. Gastroenterology 2011;141:1498–508; 1508 e1491-1495.
  • UBeuers, SHohenester, LJde Buy Wenniger, AEKremer, PLJansen, RPElferink. The biliary HCO(3) (-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 2010;52:1489–96.
  • AFHofmann. Clinical implications of physiochemical studies on bile salts. Gastroenterology 1965;48:484–94.
  • AFHofmann, LRHagey. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 2008;65:2461–83.
  • GFMells, AKaser, THKarlsen. Novel insights into autoimmune liver diseases provided by genome-wide association studies. J Autoimmun 2013;46:41–54.
  • THKarlsen. A lecture on the genetics of primary sclerosing cholangitis. Dig Dis 2012;30:32–8.
  • TFolseraas, ESchrumpf, KMBoberg. Genetics in primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 2011;25:713–26.
  • TLWhiteside, SLasky, LSi, DHVan Thiel. Immunologic analysis of mononuclear cells in liver tissues and blood of patients with primary sclerosing cholangitis. Hepatology 1985;5:468–74.
  • CYPonsioen, HKuiper, FJTen Kate, Mvan Milligen de Wit, SJvan Deventer, GNTytgat. Immunohistochemical analysis of inflammation in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol 1999;11:769–74.
  • JLudwig, SSBarham, NFLaRusso, LRElveback, RHWiesner, JTMcCall. Morphologic features of chronic hepatitis associated with primary sclerosing cholangitis and chronic ulcerative colitis. Hepatology 1981;1:632–40.
  • UBroome, JGrunewald, AScheynius, OOlerup, RHultcrantz. Preferential V beta3 usage by hepatic T lymphocytes in patients with primary sclerosing cholangitis. J Hepatol 1997;26:527–34.
  • CSProbert, ADChrist, LJSaubermann, JRTurner, AChott, DCarr-Locke, et al. Analysis of human common bile duct-associated T cells: evidence for oligoclonality, T cell clonal persistence, and epithelial cell recognition. J Immunol 1997;158:1941–8.
  • BTerjung, JSöhne, BLechtenberg, JGottwein, MMuennich. Herzog V, et al. p-ANCA in autoimmune liver disorders recognize human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut 2010;59:808–16.
  • LMSollid, BJabri. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol 2013;13:294–302.
  • KAFleming, KMBoberg, HGlaumann, ABergquist, DSmith, OPClausen. Biliary dysplasia as a marker of cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 2001;34:360–5.
  • BBlechacz, GJGores. Cholangiocarcinoma: advances in pathogenesis, diagnosis, and treatment. Hepatology 2008;48:308–21.
  • SYBangarulingam, EBjornsson, FEnders, EGBarr Fritcher, GGores, KCHalling, et al. Long-term outcomes of positive fluorescence in situ hybridization tests in primary sclerosing cholangitis. Hepatology 2010;51:174–80.
  • LHalme, JArola, KNumminen, LKrogerus, HMäkisalo, MFärkkilä. Biliary dysplasia in patients with primary sclerosing cholangitis: additional value of DNA ploidity. Liver Int 2012;32:783–9.
  • JTLewis, JATalwalkar, CBRosen, TCSmyrk, SCAbraham. Precancerous bile duct pathology in end-stage primary sclerosing cholangitis, with and without cholangiocarcinoma. Am J Surg Pathol 2010;34:27–34.
  • JFevery, LHenckaerts, RVan Oirbeek, SVermeire, PRutgeerts, FNevens, et al. Malignancies and mortality in 200 patients with primary sclerosering cholangitis: a long-term single-centre study. Liver Int 2012;32:214–22.
  • CCorpechot, FGaouar, AEl Naggar, AKemgang, DWendum, RPoupon, et al. Baseline values and changes in liver stiffness measured by transient elastography are associated with severity of fibrosis and outcomes of patients with primary sclerosing cholangitis. Gastroenterology 2014;146:970–9; e976.
  • JLudwig. Surgical pathology of the syndrome of primary sclerosing cholangitis. Am J Surg Pathol 1989;13:43–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.