Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 40, 2010 - Issue 2
139
Views
4
CrossRef citations to date
0
Altmetric
General Xenobiochemistry

Metabolism and distribution of two highly potent and selective peptidomimetic inhibitors of matriptase

, , , , &
Pages 93-101 | Received 07 Sep 2009, Accepted 09 Oct 2009, Published online: 22 Dec 2009

References

  • Balasubramanian AS, Bhanumathy CD. (1993). Noncholinergic functions of cholinesterases. FASEB J 7(14):1354–8.
  • Benvenuti S, Comoglio PM. (2007). The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol 213(2):316–25.
  • Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. (1998). Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci 6(4):317–24.
  • Clement B, Demesmaeker M, Linne S. (1996). Microsomal catalysed N-hydroxylation of guanabenz and reduction of the N-hydroxylated metabolite: characterization of the two reactions and genotoxic potential of guanoxabenz. Chem Res Toxicol 9(4):682–8.
  • Edvinsson L. (2009). Migraine: telcagepant provides new hope for people with migraine. Nat Rev Neurol 5(5):240–2.
  • Ekins S, Williams JA, Murray GI, Burke MD, Marchant NC, Engeset J, Hawksworth GM. (1996). Xenobiotic metabolism in rat, dog, and human precision-cut liver slices, freshly isolated hepatocytes, and vitrified precision-cut liver slices. Drug Metab Dispos 24(9):990–5.
  • Elvin P, Garner AP. (2005). Tumour invasion and metastasis: challenges facing drug discovery. Curr Opin Pharmacol 5(4):374–81.
  • Fang J, Gorrod JW. (1991). Dehydration is the first step in the bioactivation of haloperidol to its pyridinium metabolite. Toxicol Lett 59(1–3):117–23.
  • Fingleton B. (2008). MMPs as therapeutic targets—still a viable option? Semin Cell Dev Biol 19(1):61–8.
  • Förbs D, Thiel S, Stella MC, Stürzebecher A, Schweinitz A, Steinmetzer T, Stürzebecher J, Uhland K. (2005). In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. Int J Oncol 27(4):1061–70.
  • Guengerich FP. (1997). Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact 106(3):161–82.
  • Inoue M, Morikawa M, Tsuboi M, Sugiura M. (1979). Species difference and characterization of intestinal esterase on the hydrolizing activity of ester-type drugs. Jpn J Pharmacol 29(1):9–16.
  • Lee MS. (2006). Matrix-degrading type II transmembrane serine protease matriptase: its role in cancer development and malignancy. J Cancer Mol 2(5):183–90.
  • Lee SL, Dickson RB, Lin CY. (2000). Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275(47):36720–5.
  • Levine WG. (1978). Biliary excretion of drugs and other xenobiotics. Annu Rev Pharmacol Toxicol 18:81–96.
  • Lewis DF, Jacobs MN, Dickins M. (2004). Compound lipophilicity for substrate binding to human P450s in drug metabolism. Drug Discov Today 9(12):530–7.
  • Masson P, Froment MT, Darvesh S, Schopfer LM, Lockridge O. (2007). Aryl acylamidase activity of human serum albumin with o-nitrotrifluoroacetanilide as the substrate. J Enzyme Inhib Med Chem 22(4):463–9.
  • Minagawa T, Kohno Y, Suwa T, Tsuji A. (1995). Species differences in hydrolysis of isocarbacyclin methyl ester (TEI-9090) by blood esterases. Biochem Pharmacol 49(10):1361–5.
  • Misra RN, Xiao HY, Kim KS, Lu S, Han WC, Barbosa SA, Hunt JT, Rawlins DB, Shan W, Ahmed SZ, Qian L, Chen BC, Zhao R, Bednarz MS, Kellar KA, Mulheron JG, Batorsky R, Roongta U, Kamath A, Marathe P, Ranadive SA, Sack JS, Tokarski JS, Pavletich NP, Lee FY, Webster KR, Kimball SD. (2004). N-(cycloalkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidinecarbox-amide (BMS-387032), a highly efficacious and selective antitumor agent. J Med Chem 47(7):1719–28.
  • Monshouwer M, van’t Klooster G, Nijmeijer SM, Witkamp RF, van Miert A. (1998). Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes. Toxicol In Vitro 12:712–23.
  • Myers MJ, Farrell DE, Howard KD, Kawalek JC. (2001). Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine. Drug Metab Dispos 29(6):908–15.
  • Olsen AK, Hansen KT, Friis C. (1997). Pig hepatocytes as an in vitro model to study the regulation of human CYP3A4: prediction of drug–drug interactions with 17 alpha-ethynylestradiol. Chem Biol Interact 107(1–2):93–108.
  • Skrzydlewska E, Sulkowska M, Koda M, Sulkowski S. (2005). Proteolytic–antiproteolytic balance and its regulation in carcinogenesis. World J Gastroenterol 11(9):1251–66.
  • Smith DA. (1991). Species differences in metabolism and pharmacokinetics: are we close to an understanding? Drug Metab Rev 23(3–4):355–73.
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. (1985). Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85.
  • Steinmetzer T, Schweinitz A, Stürzebecher A, Dönnecke D, Uhland K, Schuster O, Steinmetzer P, Müller F, Friedrich R, Than ME, Bode W, Stürzebecher J. (2006). Secondary amides of sulfonylated 3-amidinophenylalanine. New potent and selective inhibitors of matriptase. J Med Chem 49(14):4116–26.
  • Testa B. (1994). The metabolism of drugs and other xenobiotics. Biochemistry of redox reactions. New York, NY: Academic Press. p. 122–63.
  • Uhland K. (2006). Matriptase and its putative role in cancer. Cell Mol Life Sci 63(24):2968–78.
  • Zhang D, Wang L, Raghavan N, Zhang H, Li W, Cheng PT, Yao M, Zhang L, Zhu M, Bonacorsi S, Yeola S, Mitroka J, Hariharan N, Hosagrahara V, Chandrasena G, Shyu WC, Humphreys WG. (2007). Comparative metabolism of radiolabeled muraglitazar in animals and humans by quantitative and qualitative metabolite profiling. Drug Metab Dispos 35(1):150–67.
  • Zuber R, Anzenbacherova E, Anzenbacher P. (2002). Cytochromes P450 and experimental models of drug metabolism. J Cell Mol Med 6(2):189–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.