533
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Metabolite identification by mass spectrometry: forty years of evolution

Pages 670-686 | Received 30 Nov 2010, Accepted 15 Feb 2011, Published online: 24 Mar 2011

References

  • Nassar A-EF Talaat, RE. (2004). Strategies for dealing with metabolite elucidation in drug discovery and development. Drug Discovery Today 9:317–327.
  • Alex A, Harvey S, Parsons T, Pullen FS, Wright P, Riley JA. (2009). Can density functional theory (DFT) be used as an aid to a deeper understanding of tandem mass spectrometric fragmentation pathways? Rapid Commun Mass Spectrom 23:2619–2627.
  • Antoniu S. (2008). Discontinued drugs 2007: pulmonary-allergy, dermatogical, gastrointestinal and arthritis drugs. Expert Opinion Investig Drugs 17:1651–1661.
  • Arpino PJ, Krien P, Vajta S, Devant G. (1981). Optimisation of the instrumental parameters of a combined liquid chromatograph-mass spectrometer coupled by an interface for direct liquid introduction. J Chromatogr A 203:117–130.
  • Barber M, Bordoli RS, Sedgewick RD, Tyler AN. (1981). Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. J Chem Soc, Chem Commun 7:325–327.
  • Barker J, Garner RC. (1999). Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom. Rapid Commun Mass Spectrom 13:285–293.
  • Beynon JH. (1991). Mass spectrometry in retrospect: 25 years and more. Organic Mass Spectrom 26:353–358.
  • Bieri RH, Greaves J. (1987). Characterization of benzo(a)pyrene metabolites by high performance liquid chromatography-mass spectrometry with a direct liquid introduction interface and using negative chemical ionization. Biomed Environ Mass Spectrom 14:555–561.
  • Blackey CR, Carmody JJ, Vestal ML. (1980). A new soft ionization technique for mass spectrometry of complex molecules. Anal Chem 52:1636.
  • Bowers GD, Bayliss MK, Donnelly MC, Fellows I, Ismail IM, Mookherjee CR. (1998). The characterisation of the major metabolite of salmeterol in the dog. J Pharm Biomed Anal 18:461–470.
  • Bruins AP. (1991). Liquid chromatography-mass spectrometry with ionspray and electrospray interfaces in pharmaceutical and biomedical research. J Chromatogr 554:39–46.
  • Bruins AP. (1994). Atmospheric–pressure-ionisation mass spectrometry 1. Instrumenation and ionisation techniques. Trends Anal Chem 13:37–43.
  • Buchholz BA, Dueker SR, Lin Y, Clifford AJ, Vogel JS. (2000). Methods and application of HPLC-AMS. Nucl Instr and Meth In Phys Res B 172:910–914.
  • Carroll DI, Dzidic I, Stillwel RN, Haegele KD, Horning EC. (1975). Atmospheric pressure ionization mass spectrometry: corona discharge ion source for use in liquid chromatograph—mass spectrometermp_semicomputer analytical system. Anal Chem 47:2369–2373.
  • Choi BK, Hercules DM, Zhang T, Gusev AI. (2001). Comparison of quadrupole, time-of-flight, and Fourier transform mass analyzers for LC–MS applications. LCGC 19:514–524.
  • Clark GT, Haynes JJ, Bayliss MA, Burrows L. (2010). Utilization of DBS within drug discovery: development of a serial microsampling pharmacokinetic study in mice. Bioanalysis 2:1477–1488.
  • Cody RB, Laramée JA, Durst HD. (2005). Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302.
  • Comisarow MB, Marshall AG. (1974). Fourier transform ion cyclotron resonance (FT-ICR) spectroscopy. Chem Phys Lett 25:282–283.
  • Covey T, Bruins AP, Henion JD. (1988). Comparison of thermospray and IonSpray mass spectrometry in an atmospheric pressure ion source. Organic Mass Spectrom 23:178–186.
  • Cuyckens F, Balcaen LI, De Wolf K, De Samber B, Van Looveren C, Hurkmans R, Vanhaecke F. (2008). Use of the bromine isotope ratio in HPLC-ICP-MS and HPLC-ESI-MS analysis of a new drug in development. Anal Bioanal Chem 390:1717–1729.
  • Davis-Bruno KL, Atrakchi A. (2006). A regulatory perspective on issues and approaches in characterizing human metabolites. Chem Res Toxicol 19:1561–1563.
  • Dear GJ, Munoz-Muriedas J, Beaumont C, Roberts A, Kirk J, Williams JP, Campuzano I. (2010). Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun Mass Spectrom 24:3157–3162.
  • Dempster AJ. (1918). A new method of positive ray analysis. Phys Rev 11:316–325.
  • Douglas DJ, Frank AJ, Mao D. (2005). Linear ion traps in mass spectrometry. Mass Spectrom Rev 24:1–29.
  • Duckett CJ, Bailey NJC, Walker H, Abou-Shakra F, Wilson ID, Lindon JC, Nicholson JK. (2002). Quantitation in gradient high performance liquid chromatography/inductively coupled mass spectrometry investigated using diclofenac and chloroprozamine. Rapid Commun. Mass Spectrom 16:245–247.
  • Duckett CJ, Lindon JC, Walker H, Abou-Shakra F, Wilson ID, Nicholson JK. (2006). Metabolism of 3-chloro-4-fluoroaniline in rat using [14C]-radiolabelling, 19F-NMR spectroscopy, HPLC-MS/MS, HPLC-ICPMS and HPLC-NMR. Xenobiotica 36:59–77.
  • Favetta P, Guitton J, Degoutte DS, Van Daele L, Boulie R. (2000). High-performance liquid chromatographic assay to detect hydroxylate and conjugates metabolites of propofol in human urine. J Chromatogr B 742:25–35.
  • FDA. (2008). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm079266.pdf
  • Games DE, Hirter P, Kuhnz W, Lewis E, Weerasinghe NCA, Westwood SA. (1981). Studies of combined liquid chromatography-mass spectrometry with a moving belt interface. J Chromatogr 203:131–138.
  • Gammelgaard B, Hansen HR, Stürup S, Møller C. (2008). The use of inductively coupled plasma mass spectrometry as a detector in drug metabolism studies. Expert Opin Drug Metab Toxicol 4:1187–1207.
  • Gammelgaard B, Jensen BP. (2007). Application of inductively coupled plasma mass spectrometry in drug metabolism studies. J Anal At Spectrom 22:235–249.
  • Gao H, Deng S, Obach RS. (2010). A simple liquid chromatography-tandem mass spectrometry method to determine relative plasma exposures of drug metabolites across species for metabolite safety assessments. Drug Metab Dispos 38:2147–2156.
  • Garner RC. (2000). Accelerator mass spectrometry in pharmaceutical research and development–a new ultrasensitive analytical method for isotope measurement. Curr Drug Metab 1:205–213.
  • Garner RC. (2005). Less is more: the human microdosing concept. Drug Discov Today 10:449–451.
  • Glish GL, Goeringer DE. (1984). Tandem quadrupole/time-of-flight instrument for mass spectrometry/mass spectrometry. Anal Chem 56:2291–2295.
  • Greenfield S, Berry CT, Jones IL. (1964). High-pressure plasmas as spectroscopic emission sources. Analyst 89:713–720.
  • Hager JW. (2002). A new linear ion trap mass spectrometer. Rapid Commun Mass Spectrom 16:512–526.
  • Hager JW, Le Blanc JC. (2003). High-performance liquid chromatography-tandem mass spectrometry with a new quadrupole/linear ion trap instrument. J Chromatogr A 1020:3–9.
  • Hartley LP. (1953). The Go-Between. London: Hamish Hamilton.
  • Hop CE, Chen Y, Yu LJ. (2005). Uniformity of ionization response of structurally diverse analytes using a chip-based nanoelectrospray ionization source. Rapid Commun Mass Spectrom 19:3139–3142.
  • Houk RS, Fassel V, Flesch GD, Svec HJ, Gray AL, Taylor CE. (1980). Inductively coupled argon plasma as an ion-source for mass-spectrometric determination of trace-elements. Anal Chem 52:2283–2289.
  • Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. (2005). The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443.
  • Iribarne JV, Thompson BA. (1976). On the evaporation of small ions from charged droplets. J Chem Phys 64:2287–2295
  • Jensen BP, Gammelgaard B, Hansen SH, Andersen JV. (2005). HPLC-ICP-MS compared with radiochemical detection for metabolite profiling of 3H-Bromahexine in rate urine and faeces. J Anal At Spectrom 20:204–209.
  • Jensen BP, Smith C, Wilson ID, Weidolf L. (2004). Sensitive sulphur-specific detection of omeprazole metabolites in rat urine by high-performance liquid chromatography/inductively coupled plasma mass spectrometry. Rapid Commun Mass Spectrom 18:181–183.
  • Johnson EG. (1953). Angular aberrations in sector-shaped electromagnetic lenses for focusing beams of charged particles. Phys Rev 91:10–17.
  • Karas M, Bachmann D, Hillenkamp F. (1985). Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939.
  • Kaye B, Clark MW, Cussans NJ, Macrae PV, Stopher DA. (1992). The sensitive determination of abanoquil in blood by high-performance liquid chromatography/atmospheric pressure ionization mass spectrometry. Biol Mass Spectrom 21:585–589.
  • Keski-Hynnilä H, Kurkela M, Elovaara E, Antonio L, Magdalou J, Luukkanen L, Taskinen J, Kostiainen R. (2002). Comparison of electrospray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization in the identification of apomorphine, dobutamine, and entacapone phase II metabolites in biological samples. Anal Chem 74:3449–3457.
  • Kola I, Landis J. (2004). Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715.
  • Lawrence EO, Alvarez LW, Brobeck WM, Cooksey D, Corson DR, McMillan EM, Salisbury WW, Thornton RL. (1939). Initial performance of the 60-inch cyclotron of the William H. Crocker radiation laboratory. University of California. Phys Rev 56:124.
  • Liu ZY, Tao YF, Chen DM, Wang X, Yuan ZH. (2011). Identification of carbadox metabolites formed by liver microsomes from rats, pigs and chickens using high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:341–348.
  • Luffer-Atlas D. (2008). Unique/major human metabolites: why, how, and when to test for safety in animals. Drug Metab Rev 40:447–463.
  • Ma S, Chowdhury SK, Alton KB. (2006). Application of mass spectrometry for metabolite identification. Curr Drug Metab 7:503–523.
  • Makarov A. (2000). Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72:1156–1162.
  • Mamyrin BA, Karataev VI, Shmikk DV, Zagulin VA. (1973) The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution. Sov Phys JETP 37:45.
  • Martin LE, Oxford J, Tanner RJ. (1981). The use of on-line high-performance liquid chromatography-mass spectrometry for the identification of ranitidine and its metabolites in urine. Xenobiotica 11:831–840.
  • Martin LE, Oxford J, Dixon D, Schuster RA. (1984). Comparison of the moving belt and direct liquid introduction interfaces for HPLC-MS of ranitidine and its metabolites. Methodol Surv Biochem Anal (Drug Determ Ther Forensic Contexts) 14:191–4.
  • Mattauch J, Herzog R. (1934). Über einen neuen Massenspektrographen. Zeitschrift fur Physik 89:786.
  • McFadden H, Schwartz HL, Evans S. (1976). Direct analysis of liquid chromatographic effluents. J Chromatogr 122:389.
  • Miyaoka T, Isono Y, Setani K, Kumiko S, Ichimaro Y, Yoshiaki S, Shinobu, G, Takao M. (2007). Bioanalysis works in the IAA AMS facility: comparison of AMS analytical method with LSC method in human mass balance study. Nucl Instrum and Meth In Phys Res B 259:779–785.
  • Munson MSB, Field FH. (1966). Chemical ionization mass spectrometry I. General introduction. J Am Chem Soc 88:2621–2630.
  • Nedderman AN, Wright P. (2010). Looking back through the MIST: a perspective of evolving strategies and key focus areas for metabolite safety analysis. Bioanalysis 2:1235–1248.
  • Nier AO. (1947). A new mass spectrometer. Rev Sci Instrum 18:398–411.
  • Nobilis M, Anzenbacher P, Pastera J, Svoboda Z, Hrubý K, Kvetina J, Ubik K, Trejtnar F. (1996). Study of the biotransformation of a potential benzo[c]fluorene antineoplastic using high-performance liquid chromatography with high-speed-scanning ultraviolet detection. J Chromatogr B, Biomed Appl 681:143–151.
  • Paul W, Steinwedel H. (1953). A new mass spectrometer without a magnetic field. Zeitschrift für Naturforschung A 8:448–450.
  • Prakash C, Shaffer CL, Nedderman A. (2007). Analytical strategies for identifying drug metabolites. Mass Spectrom Rev 26:340–369.
  • Prideaux B, Staab D, Stoeckli M. (2010). Applications of MALDI-MSI to pharmaceutical research. Methods Mol Biol 656:405–413.
  • Ramanathan R, Su A-D, Alvarez N, Blumenkrantz N, Chowdhury SK, Alton K, Patrick J. (2000). Liquid chromatography/mass spectrometry methods for distinguishing N-oxides from hydroxylated compounds. Anal Chem 72:1352–1359.
  • Ramanathan R, Zhong R, Blumenkrantz N, Chowdhury SK, Alton KB. (2007). Response normalized liquid chromatography nanospray ionization mass spectrometry. J Am Soc Mass Spectrom 18:1891–1899.
  • Rousu T, Herttuainen J, Tolonen A. (2010). Comparison of triple quadrupole, hybrid linear ion trap triple quadrupole, time-of-flight and LTQ-Orbitrap™ mass spectrometers in drug discovery phase metabolite screening and identification in vitro–amitriptyline and verapamil as model compounds. Rapid Commun Mass Spectrom 24:939–957.
  • Schmidt A, Karas M, Dülcks T. (2003). Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J Am Soc Mass Spectrom 14:492–500.
  • Schneider BB, Javaheri H, Covey TR. (2006). Ion sampling effects under conditions of total solvent consumption. Rapid Commun Mass Spectrom 20:1538–1544 (http://onlinelibrary.wiley.com/doi/10.1002/rcm.2511/abstract - fn1).
  • Scott RPW, Scott CG, Munroe M, Hess J. (1974). Interface for on-line liquid chromatography—mass spectroscopy analysis. J Chromatogr 99:395.
  • Shrestha B, Li Y, Vertes A. (2008). A rapid analysis of pharmaceuticals and excreted xenobiotic and endogenous metabolites with atmospheric pressure infrared MALDI mass spectrometry. Metabolomics 4:297–311.
  • Smith C, Jensen BP, Wilson ID, Abou-Shakra F, Crowther D. (2004). High-performance liquid chromatography/inductively coupled plasma mass spectrometry and tandem mass spectrometry for the detection of carbon-containing compounds. Rapid Commun Mass Spectrom 18:1487–1492.
  • Smith DA, Obach RS. (2005). Seeing through the mist: abundance versus percentage. Commentary on metabolites in safety testing. Drug Metab Dispos 33:1409–1417.
  • Smith DA, Obach RS. (2006). Metabolites and safety: what are the concerns, and how should we address them? Chem Res Toxicol 19:1570–1579.
  • Stephens W. (1946). Pulsed mass spectrometer with time dispersion. Bull Am Phys Soc 21:22.
  • Takáts Z, Wiseman JM, Gologan B, Cooks RG. (2004). Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473.
  • Thompson BA, Iribarne JV. (1979). Field-induced ion evaporation from liquid surfaces at atmospheric pressure. J Chem Physics 71:4451–4463.
  • Tiller PR, Yu S, Castro-Perez J, Fillgrove KL, Baillie TA. (2008). High-throughput, accurate mass liquid chromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a ‘first-line’ approach for metabolite identification studies. Rapid Commun Mass Spectrom 22:1053–1061.
  • Tong W, Chowdhury SK, Chen JC, Zhong R, Alton KB, Patrick JE. (2001). Fragmentation of N-oxides (deoxygenation) in atmospheric pressure ionization: investigation of the activation process. Rapid Commun Mass Spectrom 15:2085–2090.
  • Valaskovic GA, Utley L, Lee MS, Wu JT. (2006). Ultra-low flow nanospray for the normalization of conventional liquid chromatography/mass spectrometry through equimolar response: standard-free quantitative estimation of metabolite levels in drug discovery. Rapid Commun Mass Spectrom 20:1087–1096.
  • Vestbo J, Tan L, Atkinson G, Ward J. (2009). A controlled trial of 6-weeks’ treatment with a novel inhaled phosphodiesterase type-4 inhibitor in COPD. Eur Respir J 33:1039–1044.
  • Vogel JS, Turteltaub KW (2000). Bioanalytical application of accelerator mass spectrometry for pharmaceutical research. Current Pharmaceutical Design 6:991–2007.
  • Volná K, Holcapek M, Kolárová L, Lemr K, Cáslavský J, Kacer P, Poustka J, Hubálek M. (2008). Comparison of negative ion electrospray mass spectra measured by seven tandem mass analyzers towards library formation. Rapid Commun Mass Spectrom 22:101–108.
  • Voyksner RD, Bursey JT, Hines JW, Pellizzari ED. (1984). A comparison of thermospray and direct liquid introduction high-performance liquid chromatography/mass spectrometry for the analysis of candidate antimalarials. Biomed Mass Spectrom 11:616–621.
  • Walker D, Brady J, Dalvie D, Davis J, Dowty M, Duncan JN, Nedderman A, Obach RS, Wright P. (2009). A holistic strategy for characterizing the safety of metabolites through drug discovery and development. Chem Res Toxicol 22:1653–1662.
  • Watson D, Taylor GW, Laird S, Vinson GP. (1987). Identification of steroids in rat adrenal glands by liquid chromatography-thermospray mass spectrometry. Biochem J 242:109–114.
  • Weaver R. (2008). Poster at ISSX Vienna.
  • Williams DH, Fleming I. (1995). Spectroscopic Methods in Organic Chemistry, 5th ed. McGraw-Hill Book Company Ltd.
  • Williams JP, Patel VJ, Holland R, Scrivens JH. (2006). The use of recently described ionisation techniques for the rapid analysis of some common drugs and samples of biological origin. Rapid Commun Mass Spectrom 20:1447–1456.
  • Wilson ID, Brinkman UATh. (2007). Hype and hyphenation: multiple hyphenation of column liquid chromatography and spectroscopy. Trend Anal Chem 26:847–854.
  • Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG. (2008). Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. PNAS 105:18120–18125. http://www.pnas.org/content/105/47/18120.full - aff-1; http://www.pnas.org/content/105/47/18120.full - aff-3)
  • Wishart DS. (2008). Applications of metabolomics in drug discovery and development. Drugs R D 9:307–322.
  • Wright P, Alex A, Nyaruwata T, Parsons T, Pullen F. (2010). Using density functional theory to rationalise the mass spectral fragmentation of maraviroc and its metabolites. Rapid Commun Mass Spectrom 24:1025–1031.
  • Wrona M, Mauriala T, Bateman KP, Mortishire-Smith RJ, O’Connor D. (2005). ‘All-in-one’ analysis for metabolite identification using liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry with collision energy switching. Rapid Commun Mass Spectrom 19:2597–2602.
  • Yamaguchi J, Kokatsu J, Suwa T. (1992). Thermospray liquid chromatography/tandem mass spectrometry of thermally labile xenobiotic conjugates. Biological Mass Spectrom 21:285–291.
  • Yost RA, Enke CG. (1978). Selected ion fragmentation with a tandem quadrupole mass spectrometer. J Am Chem 100:2274–2275.
  • Yost RA, Enke CG, McGilvery DC, Smith D, Morrison JD. (1979). High-efficiency collision-induced dissociation in an RF-only quadrupole. Int J Mass Spectrom Ion Phys 30:127–136.
  • Zhu P, Tong W, Alton K, Chowdhury S. (2009). An accurate-mass-based spectral-averaging isotope-pattern-filtering algorithm for extraction of drug metabolites possessing a distinct isotope pattern from LC-MS data. Anal Chem 81:5910–5917.
  • Zhu M, Ma L, Zhang D, Ray K, Zhao W, Humphreys WG, Skiles G, Sanders M, Zhang H. (2006). Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data. Drug Metab Dispos 34:1722–1733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.