Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 41, 2011 - Issue 9
442
Views
11
CrossRef citations to date
0
Altmetric
Pharmacogenetics

Evaluation of the effects of 18 non-synonymous single-nucleotide polymorphisms of CYP450 2C19 on in vitro drug inhibition potential by a fluorescence-based high-throughput assay

, , , , , & show all
Pages 826-835 | Received 22 Jan 2011, Accepted 18 Apr 2011, Published online: 22 Jun 2011

References

  • Blaisdell J, Mohrenweiser H, Jackson J, Ferguson S, Coulter S, Chanas B, Xi T, Ghanayem B, Goldstein JA. (2002). Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics 12:703–711.
  • Crespi CL, Miller VP, Penman BW. (1997). Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal Biochem 248:188–190.
  • Crespi CL, Stresser DM. (2000). Fluorometric screening for metabolism-based drug–drug interactions. J Pharmacol Toxicol Methods 44:325–331.
  • De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA. (1994a). Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598.
  • De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA. (1994b). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269:15419–15422.
  • Donato MT, Jiménez N, Castell JV, Gómez-Lechón MJ. (2004). Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab Dispos 32:699–706.
  • Drögemöller BI, Wright GE, Niehaus DJ, Koen L, Malan S, Da Silva DM, Hillermann-Rebello R, La Grange AM, Venter M, Warnich L. (2010). Characterization of the genetic profile of CYP2C19 in two South African populations. Pharmacogenomics 11:1095–1103.
  • Ferguson RJ, De Morais SM, Benhamou S, Bouchardy C, Blaisdell J, Ibeanu G, Wilkinson GR, Sarich TC, Wright JM, Dayer P, Goldstein JA. (1998). A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J Pharmacol Exp Ther 284:356–361.
  • Gao Y, Liu D, Wang H, Zhu J, Chen C. (2010). Functional characterization of five CYP2C8 variants and prediction of CYP2C8 genotype-dependent effects on in vitro and in vivo drug–drug interactions. Xenobiotica 40:467–475.
  • Guengerich FP. (1997). Role of cytochrome P450 enzymes in drug–drug interactions. Adv Pharmacol 43:7–35.
  • Hanioka N, Tsuneto Y, Saito Y, Maekawa K, Sawada J, Narimatsu S. (2008). Influence of CYP2C19*18 and CYP2C19*19 alleles on omeprazole 5-hydroxylation: in vitro functional analysis of recombinant enzymes expressed in Saccharomyces cerevisiae. Basic Clin Pharmacol Toxicol 102:388–393.
  • Hanioka N, Tsuneto Y, Saito Y, Sumada T, Maekawa K, Saito K, Sawada J, Narimatsu S. (2007). Functional characterization of two novel CYP2C19 variants (CYP2C19*18 and CYP2C19*19) found in a Japanese population. Xenobiotica 37:342–355.
  • Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Hummel MA, Locuson CW, Gannett PM, Rock DA, Mosher CM, Rettie AE, Tracy TS. (2005). CYP2C9 genotype-dependent effects on in vitro drug–drug interactions: switching of benzbromarone effect from inhibition to activation in the CYP2C9.3 variant. Mol Pharmacol 68:644–651.
  • Ibeanu GC, Blaisdell J, Ferguson RJ, Ghanayem BI, Brosen K, Benhamou S, Bouchardy C, Wilkinson GR, Dayer P, Goldstein JA. (1999). A novel transversion in the intron 5 donor splice junction of CYP2C19 and a sequence polymorphism in exon 3 contribute to the poor metabolizer phenotype for the anticonvulsant drug S-mephenytoin. J Pharmacol Exp Ther 290:635–640.
  • Ibeanu GC, Blaisdell J, Ghanayem BI, Beyeler C, Benhamou S, Bouchardy C, Wilkinson GR, Dayer P, Daly AK, Goldstein JA. (1998a). An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmacogenetics 8:129–135.
  • Ibeanu GC, Goldstein JA, Meyer U, Benhamou S, Bouchardy C, Dayer P, Ghanayem BI, Blaisdell J. (1998b). Identification of new human CYP2C19 alleles (CYP2C19*6 and CYP2C19*2B) in a Caucasian poor metabolizer of mephenytoin. J Pharmacol Exp Ther 286:1490–1495.
  • Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. (2007). Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116:496–526.
  • Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brøsen K. (1996). Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 51:73–78.
  • Johansson I, Oscarson M, Yue QY, Bertilsson L, Sjöqvist F, Ingelman-Sundberg M. (1994). Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 46:452–459.
  • Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, Ikeda T, Kurihara A. (2009). Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 38:92–99.
  • Kita T, Tanigawara Y, Aoyama N, Hohda T, Saijoh Y, Komada F, Sakaeda T, Okumura K, Sakai T, Kasuga M. (2001). CYP2C19 genotype related effect of omeprazole on intragastric pH and antimicrobial stability. Pharm Res 18:615–621.
  • Krippendorff BF, Lienau P, Reichel A, Huisinga W. (2007). Optimizing classification of drug–drug interaction potential for CYP450 isoenzyme inhibition assays in early drug discovery. J Biomol Screen 12:92–99.
  • Kumar V, Brundage RC, Oetting WS, Leppik IE, Tracy TS. (2008). Differential genotype dependent inhibition of CYP2C9 in humans. Drug Metab Dispos 36:1242–1248.
  • Kumar V, Wahlstrom JL, Rock DA, Warren CJ, Gorman LA, Tracy TS. (2006). CYP2C9 inhibition: impact of probe selection and pharmacogenetics on in vitro inhibition profiles. Drug Metab Dispos 34:1966–1975.
  • Lee SJ, Kim WY, Kim H, Shon JH, Lee SS, Shin JG. (2009). Identification of new CYP2C19 variants exhibiting decreased enzyme activity in the metabolism of S-mephenytoin and omeprazole. Drug Metab Dispos 37:2262–2269.
  • Lewis DF. (2002). Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure. Xenobiotica 32:305–323.
  • Liu D, Gao Y, Wang H, Zi J, Huang H, Ji J, Zhou R, Nan Y, Wang S, Zheng X, Zhu J, Cui Y, Chen C. (2010). Evaluation of the effects of cytochrome P450 nonsynonymous single-nucleotide polymorphisms on tanshinol borneol ester metabolism and inhibition potential. Drug Metab Dispos 38:2259–2265.
  • Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W, Braunwald E, Sabatine MS. (2009). Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 360:354–362.
  • Morita J, Kobayashi K, Wanibuchi A, Kimura M, Irie S, Ishizaki T, Chiba K. (2004). A novel single nucleotide polymorphism (SNP) of the CYP2C19 gene in a Japanese subject with lowered capacity of mephobarbital 4′-hydroxylation. Drug Metab Pharmacokinet 19:236–238.
  • Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. (2006). The utility of in vitro cytochrome P450 inhibition data in the prediction of drug–drug interactions. J Pharmacol Exp Ther 316:336–348.
  • Oda A, Yamaotsu N, Hirono S. (2004). Studies of binding modes of (S)-mephenytoin to wild types and mutants of cytochrome P450 2C19 and 2C9 using homology modeling and computational docking. Pharm Res 21:2270–2278.
  • Omura T, Sato R. (1964). The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378.
  • Rosemary J, Adithan C. (2007). The pharmacogenetics of CYP2C9 and CYP2C19: ethnic variation and clinical significance. Curr Clin Pharmacol 2:93–109.
  • Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L, Ingelman-Sundberg M. (2006). A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113.
  • Tateishi T, Kumai T, Watanabe M, Nakura H, Tanaka M, Kobayashi S. (1999). Ticlopidine decreases the in vivo activity of CYP2C19 as measured by omeprazole metabolism. Br J Clin Pharmacol 47:454–457.
  • Uno T, Shimizu M, Yasui-Furukori N, Sugawara K, Tateishi T. (2006). Different effects of fluvoxamine on rabeprazole pharmacokinetics in relation to CYP2C19 genotype status. Br J Clin Pharmacol 61:309–314.
  • Wang H, An N, Wang H, Gao Y, Liu D, Bian T, Zhu J, Chen C. (2011). Evaluation of the Effects of 20 nonsynonymous single nucleotide polymorphisms of CYP2C19 on S-mephenytoin 4′-hydroxylation and omeprazole 5′-hydroxylation. Drug Metab Dispos 39:830–837.
  • Wang JF, Wei DQ, Chen C, Li Y, Chou KC. (2008). Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design. Protein Pept Lett 15:27–32.
  • Wang JF, Wei DQ, Li L, Zheng SY, Li YX, Chou KC. (2007). 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem Biophys Res Commun 355:513–519.
  • Weaver R, Graham KS, Beattie IG, Riley RJ. (2003). Cytochrome P450 inhibition using recombinant proteins and mass spectrometry/multiple reaction monitoring technology in a cassette incubation. Drug Metab Dispos 31:955–966.
  • Wedlund PJ. (2000). The CYP2C19 enzyme polymorphism. Pharmacology 61:174–183.
  • Wienkers LC, Heath TG. (2005). Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833.
  • Xiao ZS, Goldstein JA, Xie HG, Blaisdell J, Wang W, Jiang CH, Yan FX, He N, Huang SL, Xu ZH, Zhou HH. (1997). Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther 281:604–609.
  • Yasui-Furukori N, Saito M, Uno T, Takahata T, Sugawara K, Tateishi T. (2004a). Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J Clin Pharmacol 44:1223–1229.
  • Yasui-Furukori N, Takahata T, Nakagami T, Yoshiya G, Inoue Y, Kaneko S, Tateishi T. (2004b). Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol 57:487–494.
  • Yoichi N, Yuriko T, Shigeyuki T, Akira K. (2004). Utility of microtiter plate assays for human cytochrome P450 inhibition studies in drug discovery: application of single method for detecting quasi-irreversible and irreversible inhibitors. Drug Metab Pharmacokinet 19:55–61.
  • Yu KS, Yim DS, Cho JY, Park SS, Park JY, Lee KH, Jang IJ, Yi SY, Bae KS, Shin SG. (2001). Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19. Clin Pharmacol Ther 69:266–273.
  • Zanger UM, Turpeinen M, Klein K, Schwab M. (2008). Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 392:1093–1108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.