Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 46, 2016 - Issue 9
508
Views
10
CrossRef citations to date
0
Altmetric
Xenobiotic Transporters

Mixed effects of OATP1B1, BCRP and NTCP polymorphisms on the population pharmacokinetics of pravastatin in healthy volunteers

, , &
Pages 841-849 | Received 21 Oct 2015, Accepted 08 Dec 2015, Published online: 08 Jan 2016

References

  • Assaraf YG. (2006). The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat 9:227–46
  • Bi YA, Qiu X, Rotter CJ, et al (2013). Quantitative assessment of the contribution of sodium-dependent taurocholate co-transporting polypeptide (NTCP) to the hepatic uptake of rosuvastatin, pitavastatin and fluvastatin. Biopharm Drug Dispos 34:452–61
  • Birmingham BK, Bujac SR, Elsby R, et al (2015). Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: a class effect? Eur J Clin Pharmacol 71:341–55
  • Cockcroft DW, Gault MH. (1976). Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41
  • Deng JW, Song IS, Shin HJ, et al (2008). The effect of SLCO1B1*15 on the disposition of pravastatin and pitavastatin is substrate dependent: the contribution of transporting activity changes by SLCO1B1*15. Pharmacogenet Genomics 18:424–33
  • Escobar Y, Venturelli CR, Hoyo-Vadillo C. (2005). Pharmacokinetic properties of pravastatin in Mexicans: an open-label study in healthy adult volunteers. Curr Ther Res Clin Exp 66:238–46
  • Hagenbuch B, Meier PJ. (1994). Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+/bile acid cotransporter. J Clin Invest 93:1326–31
  • Hatanaka T. (2000). Clinical pharmacokinetics of pravastatin: mechanisms of pharmacokinetic events. Clin Pharmacokinet 39:397–412
  • Hedman M, Neuvonen PJ, Neuvonen M, Antikainen M. (2003). Pharmacokinetics and pharmacodynamics of pravastatin in children with familial hypercholesterolemia. Clin Pharmacol Ther 74:178–85
  • Hedman M, Antikainen M, Holmberg C, et al (2006). Pharmacokinetics and response to pravastatin in paediatric patients with familial hypercholesterolaemia and in paediatric cardiac transplant recipients in relation to polymorphisms of the SLCO1B1 and ABCB1 genes. Br J Clin Pharmacol 61:706–15
  • Hu M, To KK, Mak VW, Tomlinson B. (2011). The ABCG2 transporter and its relations with the pharmacokinetics, drug interaction and lipid-lowering effects of statins. Expert Opin Drug Metab Toxicol 7:49–62
  • Hua WJ, Hua WX, Fang HJ. (2012). The role of OATP1B1 and BCRP in pharmacokinetics and DDI of novel statins. Cardiovasc Ther 30:e234–41
  • Ide T, Sasaki T, Maeda K, et al (2009). Quantitative population pharmacokinetic analysis of pravastatin using an enterohepatic circulation model combined with pharmacogenomic information on SLCO1B1 and ABCC2 polymorphisms. J Clin Pharmacol 49:1309–17
  • Ieiri I, Higuchi S, Sugiyama Y. (2009). Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs. Expert Opin Drug Metab Toxicol 5:703–29
  • Keskitalo JE, Zolk O, Fromm MF, et al (2009). ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther 86:197–203
  • Keogh A, Macdonald P, Kaan A, et al (2000). Efficacy and safety of pravastatin vs simvastatin after cardiac transplantation. J Heart Lung Transplant 19: 529–37
  • Kietsiriroje N, Leelawattana R. (2015). Effects of pravastatin, phytosterols, and combination therapy on lipid profile in HIV-infected patients: an open-labelled, randomized cross-over study. BMC Res Notes 8:294
  • Kerb R. (2006). Implications of genetic polymorphisms in drug transporters for pharmacotherapy. Cancer Lett 234:4–33
  • Kunze A, Huwyler J, Camenisch G, Poller B. (2014). Prediction of organic anion-transporting polypeptide 1B1- and 1B3-mediated hepatic uptake of statins based on transporter protein expression and activity data. Drug Metab Dispos 42:1514–21
  • Lee CA, O'Connor MA, Ritchie TK, et al (2015). Breast cancer resistance protein (ABCG2) in clinical pharmacokinetics and drug interactions: practical recommendations for clinical victim and perpetrator drug-drug interaction study design. Drug Metab Dispos 43:490–509
  • Lee HK, Hu M, Lui SSh, et al (2013). Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics 14:1283–94
  • Lou XY, Zhang W, Wang G, et al (2014). The effect of Na+/taurocholate cotransporting polypeptide (NTCP) c.800C > T polymorphism on rosuvastatin pharmacokinetics in Chinese healthy males. Pharmazie 69:775–9
  • Martin NG, Li KW, Murray H, et al (2012). The effects of a single nucleotide polymorphism in SLCO1B1 on the pharmacodynamics of pravastatin. Br J Clin Pharmacol 73:303–6
  • Neuvonen PJ, Backman JT, Niemi M. (2008). Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin. Clin Pharmacokinet 47:463–74
  • Niemi M, Schaeffeler E, Lang T, et al (2004). High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 14:429–40
  • Niemi M, Pasanen MK, Neuvonen PJ. (2006). SLCO1B1 polymorphism and sex affect the pharmacokinetics of pravastatin but not fluvastatin. Clin Pharmacol Ther 80:356–66
  • Ogawa K, Hasegawa S, Udaka Y, et al (2003). Individual difference in the pharmacokinetics of a drug, pravastatin, in healthy subjects. J Clin Pharmacol 43:1268–73
  • Pan W, Song IS, Shin HJ, et al (2011). Genetic polymorphisms in Na+-taurocholate co-transporting polypeptide (NTCP) and ileal apical sodium-dependent bile acid transporter (ASBT) and ethnic comparisons of functional variants of NTCP among Asian populations. Xenobiotica 41:501–10
  • Pan HY, Waclawski AP, Funke PT, Whigan D. (1993). Pharmacokinetics of pravastatin in elderly versus young men and women. Ann Pharmacother 27:1029–33
  • Santos PC, Soares RA, Nascimento RM, et al (2011). SLCO1B1 rs4149056 polymorphism associated with statin-induced myopathy is differently distributed according to ethnicity in the Brazilian general population: Amerindians as a high risk ethnic group. BMC Med Genet 12:136
  • Schachter M. (2005). Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19:117–25
  • Sigurbjörnsson S, Kjartansdóttir T, Jóhannsson M, et al (1998). A pharmacokinetic evaluation of pravastatin in middle-aged and elderly volunteers. Eur J Drug Metab Pharmacokinet 23:13–18
  • Sponseller CA, Morgan RE, Kryzhanovski VA, et al (2014). Comparison of the lipid-lowering effects of pitavastatin 4 mg versus pravastatin 40 mg in adults with primary hyperlipidemia or mixed (combined) dyslipidemia: a Phase IV, prospective, US, multicenter, randomized, double-blind, superiority trial. Clin Ther 36:1211–22
  • van de Pas NC, Rullmann JA, Woutersen RA, et al (2014). Predicting individual responses to pravastatin using a physiologically based kinetic model for plasma cholesterol concentrations. J Pharmacokinet Pharmacodyn 41:351–62
  • Voora D, Shah SH, Spasojevic I, et al (2009). The SLCO1B1*5 genetic variant is associated with statin-induced side effects. J Am Coll Cardiol 54:1609–16
  • Wang Z, Wang G, Li T, et al (2015). Marked alteration of rosuvastatin pharmacokinetics in healthy Chinese with ABCG2 34G> A and 421C> A homozygote or compound heterozygote. J Pharmacol Exp Ther 354:310–15
  • Watanabe T, Kusuhara H, Maeda K, et al (2009). Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 328:652–62
  • Yan H, Zhong G, Xu G, et al (2012). Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife 1:e00049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.