Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 19, 1989 - Issue 10
31
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Cytochrome P-450 monooxygenases in insects

&
Pages 1077-1092 | Received 16 Jan 1989, Accepted 15 Jun 1989, Published online: 22 Sep 2008

References

  • Agosin M. Insect cytochrome P-450. Molecular and Cellular Biochemistry 1976; 2: 33–44
  • Agosin M. Multiple forms of insect cytochrome P-450: role in insecticide resistance. Cytochrome P-450 Biochemistry Biophysics and Environmental Implications, E. Hietanen, M. Laitinen, O. Hanninen. Elsevier, NY 1982; 661–669
  • Ahmad S., Kirkland K. E., Blomquist G. J. Evidence for a sex pheromone metabolizing cytochrome P-450 monooxygenase in housefly. Archives of Insect Physiology and Biochemistry 1987; 6: 121–130
  • Anderson R. S. Aryl hydrocarbon hydroxylase in an insect, Spodoptera eridania (Cramer). Comparative Physiology and Biochemistry 1978; 59: 87–93
  • Baars A. J., Zijlstra J. A., Vogel E., Breimer D. D. The occurrence of cytochrome P-450 and aryl hydrocarbon hydroxylase activity in Drosophila melanogaster microsomes and the importance of this metabolizing capacity for the screening of carcinogenic and mutagenic properties of foreign compounds. Mutation Research 1977; 44: 257–268
  • Baars A. J., Jansen M., Breimer D. D. Xenobiotic metabolizing enzymes in Drosophila melanogaster: activities of epoxide hydrolase and glutathione-S-transferase compared with similar activities in rat liver. Mutation Research 1980; 62: 279–291
  • Baldridge G. D., Feyereisen R. Blood meal and cytochrome P-450 monooxygenase in the northern house mosquito Culex pipiens. Pesticide Physiology and Biochemistry 1986; 25: 407–413
  • Berry R. E., Yu S. J., Terriere L. C. Influence of host plants on insecticide metabolism and management of the variegated cutworm. Journal of Economic Entomology 1980; 73: 771–774
  • Brattsten L. B. Biochemical defense mechanisms in herbivores against plant allochemicals. Herbivores: Their Interactions with Secondary Plant Metabolites, G. A. Rosenthal, D. H. Janzen. Academic Press, NY 1979a; 199–270
  • Brattsten L. B. Ecological significance of mixed function oxidations. Drug Metabolism Reviews 1979b; 10: 35–58
  • Brattsten L. B., Holyòke C. W., Jr., Leeper J. R., Raffa K. F. Insecticide resistance: challenge to pest management and basic research. Science 1986; 231: 1255–1260
  • Brooks G. T. Insect epoxide hydratase inhibition by juvenile hormone analogues and metabolic inhibitors. Nature 1973; 245: 382–384
  • Brooks G. T. Epoxide hydratase as a modifier of biotransformation and biological activity. General Pharmacology 1977; 8: 221–226
  • Capdevila J., Morello A., Perry A. S., Agosin M. Effect of phenobarbital and naphthalene on some of the components of the electron transport system and hydroxylating activity of housefly microsomes. Biochemistry 1973a; 12: 1445–1451
  • Capdevila J., Perry A. S., Morello A., Agosin M. Some spectral properties of cytochrome P-450 from microsomes isolated from control, phenobarbital and naphthalene induced houseflies. Biochemistry Biophysics Acta 1973b; 314: 93–103
  • Capdevila J., Ahmad N., Agosin M. Soluble cytochrome P-450 from housefly microsome. Partial purification and characterization of two haemoprotein forms. Journal of Biological Chemistry 1975; 250: 1048–1060
  • Capdevila J., Agosin M. Multiple forms of housefly cytochrome P-450. Microsomes and Drug Oxidations, V. Ullrich. Pergamon Press, Oxford 1977; 144–151
  • Cassidy J. D., Smith E., Hodgson E. An ultrastructural analysis of microsomal preparations from Musca domestica and Proenia eridania. Journal of Insect Physiology 1969; 15: 1573–1578
  • Christian M. F., Yu S. J. Cytochrome P-450-dependant monooxygenase activity in the velvetbean caterpillar. Anticarsia Gemmatalis Hubner, Comparative Biochemistry and Physiology 1986; 83c: 23–27
  • Clarke S. E., Brealey C. J., Gibson G. G. Cytochrome P-450 in the housefly Musca domestica, Xenobiotica. 1989
  • Dahl A. R., Hodgson E. The interaction aliphatic analogues of methylenedioxyphenyl compounds with cytochrome P-450 and cytochrome P-420. Chemical Biological Interactions 1979; 27: 163–175
  • Eldefrawi M. E., Miskus R., Sutcher V. Methylenedioxyphenyl derivatives as synergists for carbamate insectides on susceptible, DDT- and parathion-resistent houseflies. Journal of Economic Entomology 1960; 53: 231–234
  • Farnsworth D. E., Berry R. E., Yu S. J., Terriere L. C. Aldrin epoxidase activity and cytochrome P-450 content of microsomes prepared from alfalfa and cabbage looper larvae fed various plant diets. Pesticde Biochemistry and Physiology 1981; 15: 158–165
  • Feyereisen R. Cytochrome P-450 et metabolisme de l'ecdysone, Societé. Zoologique de France Bulletin 1977; 102: 310–311
  • Feyereisen R., Durst F. Ecdysterone biosynthesis: a microsomal cytochrome P-450-linked ecdysone 20-monooxygenase from tissues of the African migratory locust. European Journal of Biochemistry 1978; 88: 37–47
  • Feyereisen R., Koener J. F., Farnsworth D. E., Nebert D. W. Isolation and sequence of cDNA encoding for a cytochrome P-450 from an insecticide resistant strain of the house fly (Musca domestica). Proceedings of the Natural Academy of Sciences U.S.A 1989; 86: 1465–1469
  • Feyereisen R., Pratt G. E., Hamnett A. F. Enzymic synthesis of juvenile hormone in locust corpora allata: evidence for a microsomal cytochrome P-450-linked methyl fornesoate epoxidase. European Journal of Biochemistry 1981; 118: 231–238
  • Fisher C. W., Mayer R. T. Characterization of house fly microsomal mixed function oxidases: inhibition of juvenile hormone I and piperonly butoxide. Toxicology 1982; 24: 15–31
  • Fisher C. W., Mayer R. T. Partial purification and characterization of phenobarbital-induced housefly cytochrome P-450. Archives of Insect Biochemistry and Physiology 1984; 1: 127–138
  • Gibson G. G., Orton T. C., Tamburini P. P. Cytochrome P-450 induction with clofibrate. Biochemical Journal 1982; 203: 161–168
  • Gilbert M. D., Wilinson C. F. Microsomal oxidases in the honey bee. Apis Mellifera, Pesticide Biochemistry and Physiology 1974; 4: 56–66
  • Gorsky L., Coon M. J. Effects of conditions for reconstitution with cytochrome b5 on the formation of products in cytochrome P-450 catalysed reactions. Drug Metabolism and Disposition 1986; 14: 89–96
  • Hammock D. D. NADPH dependant epoxidation of methyl farnesoate to juvenal hormone in the cockroach Blaberus giganticus. Pesticide Scienoe 1975; 17: 323–328
  • Hodgson E., Casida J. E. Biological oxidation of N, N, dialkyl carbamates. Biochemistry Biophysics Acta 1960; 42: 184–186
  • Hodgson E., Casida J. E. Metabolism of N,N, dialkyl carbamates and related compounds by rat liver. Biochemical Pharmacology 1961; 8: 179–191
  • Hodgson E., Tate L. G., Kulkarni A. P., Plapp F. W., Jr. Microsomal cytochrome P-450: characterization and possible role in insecticide resistance in Musca domestica. Journal of Agricultural and Food Chemistry 1974; 22: 360–366
  • Hodgson E., Kulkarni A. P. Characterization of cytochrome P-450 in studies of resistance. Pest Resistance to Pesticides: Challenges and Prospects, G. P. Georghiou, M. Aaito. Plenum Press, NY 1983
  • Hodgson E. The significance of cytochrome P-450 in insects. Insect Biochemistry 1983; 13: 237–246
  • Hodgson E. Microsomal monooxygenases. Complete Insect Physiology, Biochemistry and Pharmacology, G. A. Kerkut, L. I. Gilbert. Pergamon Press, Oxford 1985; Vol. 11: 225–321
  • Klotz A., Stegman J. J., Woodin B., Snowberger E., Thomas P., Walsh C. Cytochrome P-450 isozymes from the marine teleost Stenotomum chrysops: their roles in steroid hydroxlation and role of cytochrome b5. Archives of Biochemistry and Biophysics 1986; 249: 326–338
  • Kreiger R. I., Wilinson C. F. Microsomal mixed function oxidases in insects, I. Localization and properties of an enzyme system effecting aldrin epoxidation in larvae of the southern armyworm (Prodenia eridana). Biochemical Pharmacology 1969; 18: 1403–1415
  • Kreiger R. I., Feeny P. P., Wilkinson C. F. Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defences. Science 1971; 172: 579–581
  • Kulkarni A. P., Smith E., Hodgson E. Occurrence and characterization of microsmal cytochrome P-450 in several vertebrate and insect species. Comparative Biochemistry and Physiology 1976; 54B: 509–513
  • Kulkarni A. P., Hodgson E. Multiplicity of cytochrome P-450 in microsomal membranes from the housefly. Musca domestica, Biochemistry, Biophyscs Acta 1980; 632: 573–588
  • Kulkarni A. P., Hodgson E. Metabolism of insecticides by mixed function oxidase systems. Pharmacological Therapeutics 1980a; 8: 379–475
  • Marcus C. B., Murray M., Wang C., Wilkinson C. F. Methylene-dioxphenyl compounds as inducers of cytochrome P-450 and monooxygenase activity in the southern armyworm (Spodoptera eridania) and the rat. Pesticide Physiology and Biochemistry 1986; 26: 310–322
  • Megias A., Saborido A., Municio A. M. Cytochrome b5 from the insect Ceratitis capitata. Biochemistry Biophysics Acta 1986; 872: 116–124
  • Mitchell M. J., Smith S. L. Characterization of ecdysone 20-monooxygenase activity in wandering stage larvae of Drosophila melanogaster. Insect Biochemistry 1986; 16: 525–537
  • Moldenke A. F., Terriere L. C. Cytochrome P-450 in insects 3. Increase in substrate binding by microsomes from phenobarbital-induced house flies. Pesticide Biochemistry and Physiology 1981; 16: 222–230
  • Moldenke A. F., Berry R. E., Terriere L. C. Cytochrome P-450 in insects V. Monoterpene induction of cytochrome P-450 and associated oxygenase activities in the larva of variegated cutworm, Peridroma saucia. Journal of Comparative Physiology and Biochemistry 1983; 74c: 365–371
  • Moldenke A. F., Vincent D. R., Farnsworth D. E., Terriere L. C. Cytochrome P-450 in insects 4. Reconstitution of cytochrome P-450 dependent monooxygenase activity in the housefly. Pesticide Physiology and Biochemistry 1984; 21: 358–368
  • Naquira C., White R. A., Agosin M. Multiple forms of Drosophila cytochrome P-450. Biochemistry, Biophysics and Regulation of Cytochrome P-450, J. A. Gustafsson, J. CarlstedtDuke, A. Mode, J. Rafter. Elsevier, NY 1980; 105–108
  • Nebert D. W., Nelson D. R., Feyereisen R. Evolution of the cytochrome P-450 genes. Xenobiotica 1989; 19: 1149–1160
  • Nebert B. D. W., Gonzalez F. J. P-450 Genes, structure evolution and regulation. Annual Review of Biochemistry 1987; 56: 945–993
  • Perry A. S., Bucknor A. J. Studies on microsomal cytochrome P-450 resistant and susceptible houseflies. Life Sciences 1970; 9: 335–350
  • Perry A. S., Dale W. E., Bucknor A. J. Induction and repression of microsomal mixed-function oxidases and cytochrome P-450 in resistant and susceptible houseflies. Pesticide Biochemistry and Physiology 1971; 1: 131–142
  • Philpot R. M., Hodgson E. Differences in the cytochrome P-450s from resistant and susceptible houseflies. Chemical-Biological Interactions 1972; 4: 399–408
  • Plapp F. W., Jr. Biochemical genetics of insecticide resistance. Annual Review of Entomology 1976; 21: 179–197
  • Plapp F. W., Jr. The genetic basis of insecticide resistance in the house fly: evidence that a single locus plays a major role in metabolic resistance to insecticides. Pesticide Biochemistry and Physiology 1984; 22: 194–201
  • Pratt G. E., Jennings R. C., Hamnett A. F., Brooks G. T. Lethal metabolism of precocene I to a reactive epoxide by locust Corpora Allata. Nature 1980; 284: 320–323
  • Ray J. W. Pest Infestation Research. Her Majesty's Stationary Office, London 1965
  • Ray J. W. The epoxidation of aldrin by housefly microsomes and its inhibition by carbon monoxide. Biochemical Pharmacology 1967; 16: 99–107
  • Reidy G. F., Rose H. A., Stacey N. H. Evidence for cytochrome P-450 multiplicity in the midgut of the cluster caterpillar Spodopera litura. Pesticide Physiology and Biochemistry 1987; 29: 176–186
  • Riskallah M., Dauterman W. W., Hodgson E. Host plant induction of microsomal monooxygenase activity in relation to diazinon metabolism and toxicity in larvae of the tobacco budworm, Heliothis virescens. Pesticide Physiology and Biochemistry 1986a; 25: 233–247
  • Riskallah M., Dauterman W. C., Hodgson E. Nutritional effects on the induction of cytochrome P-450 and glutathione-transferase in larvae of the tobacco budworm Heliothis virescens. Insect Biochemistry 1986b; 16: 491–505
  • Ronis M. J. J., Dauterman W. C., Hodgson E. Characterization of multiple of forms of cytochrome P-450 from an insecticide resistant strain of housefly, Musca domestica. Pesticide Physiology and Biochemistry 1988; 32: 74–90
  • Rose H. A., Terriere L. C. Microsomal oxidase activity of three blowfly species and its induction by phenobarbital and β-naphthoflavone. Pesticide Physiology and Biochemistry 1980; 14: 275–281
  • Schonbrod R. D., Philleo W. W., Terriere L. C. Hydroxylation as a factor in resistance in houseflies and blowflies. Journal of Economic Entomology 1965; 58: 74–77
  • Schonbrod R. D., Terriere L. C. Solubilization and separation of two forms of microsomal cytochrome P-450 from the housefly, Musca domestica. Biochemical Biophysical Research Communication 1975; 64: 829–835
  • Skoda R. C., Gonzalez F. J., Meyer D. A. Identification of mutant alleles of the P-450DB1 gene associated with deficient metabolism of debrisoquine. Cytochrome P-450 Biochemistry and Biophysics, I. Schuster. Taylor & Francis, London 1989; 564–567
  • Smith S. L., Bollenbacker W. E., Cooper D. Y., Schleyer H., Wielgus J. J., Gilbert L. I. Ecdysone 20-monooxygenase: characterization of an insect cytochrome P-450 dependent steroid hydroxylase. Molecular and Cellular Endocrinology 1979; 15: 111–133
  • Smith S. L., Bollenbacker W. E., Gilbert L. I. Studies on the biosynthesis of ecdysone and 20-hydroxyecdysone in the tobacco hornworm. Manduca exta, in Progress in Ecdysterone Research, A. J. Hoffman. Elsevier, Holland 1980; 139–161
  • Stegeman J. J., Kloepper-Sams P. J. Cytochrome P-450 isozymes and monooxygenase activity in aquatic animals. Environmental Health Perspectives. DHSS, US 1987; V. 71: 87–95
  • Sun Y. P., Johnson E. R. Synergistic and antagonistic actions of insecticide-synergist combinations and their mode of action. Journal of Agricultural Food Chemistry 1960; 8: 261–266
  • Sundseth S., Kennel S. J., Waters L. C. Monoclonal antibodies to Drosphila cytochrome P-450s. Federation Proceedings 1987; 46: 2142
  • Sundseth S., Kennel S. J., Waters L. C. Correlation of cytochrome P-450 expression and insecticide resistance in Drosophila. FASEB Journal 1988; 2: A1012
  • Sundseth S. Cytochrome P-450 related to insecticide resistance. Drosophila melanogaster. PhD. Dissertation, University of Tennessee. 1988
  • Sundseth S., Nix C. E., Waters L. C. Purification of cytochrome P-450 from, Drosophila melanogaster, Insect Biochemisty. Pesticide Biochemistry & Physiology 1989; 33: 176–189
  • Tate L. G., Plapp F. W., Jr., Hodgson E. Cytochrome P-450 difference spectra of microsomes from several different insecticide-resistant and susceptible strains of housefly Musca domestica. Chemical-Biological Interactions 1973; 6: 237–247
  • Tate L. G., Plapp F. W., Jr., Hodgson E. Genetics of cytochrome P-450 in two insecticide resistant strains of the housefly Musca domestica. Biochemical Genetics 1974; 11: 49–63
  • Terriere L. C. Induction of detoxication enzymes in insects. Annual Review of Entomology 1984; 29: 71–88
  • Terriere L. C., Yu S. J. Cytochrome P-450 in insects 2. Multiple forms in the flesh fly (Sarcophaga bullata, Parker) and the blow fly (Phormia regina Meigen). Pesticide Biochemistry and Physiology 1979; 12: 249–256
  • Tsukamoto M. Biochemical genetics of insecticide resistance in the housefly. Residue Reviews 1969; 25: 289–314
  • Vincent D. R., Moldenke A. F., Terriere L. C. NADPH-Reductase from the housefly, Musca comestica. Insect Biochemistry 1983; 13: 559–566
  • Walker C. H. Species variation in some microsomal drug metabolizing enzymes. Progress in Drug Metabolism 1980; 5: 113–163
  • Walker C. H., Newton I., Hallam S., Ronis M. J. J. Activities and toxicological significance of the hepatic microsomal enzymes of the kestrel and sparrowhawk. Comparative Biochemistry and Physiology 1986; 86C: 359–363
  • Waters L. C., Simms S. I., Nix C. E. Natural variation in the expression of cytochrome P-450 and dimethylnitrosamine demethylase in, Drosophila, Biochemical. Biophysical Research Communications 1984; 123: 907–913
  • Waters L. C., Nix W. E. Regulation of insecticide resistance related cytochrome P-450 expression in, Drosophila melanogaster. Pesticide Biochemistry and Physiology 1988; 30: 214–227
  • Weirich G. F., Svoboda J. A., Thompson M. J. Ecdysone 20-monooxygenase in mitochondria and microsomes of Manduca sexta, midgut: is dual localization real?. Archives of Insect Biochemistry and Physiology 1985; 2: 385–396
  • White R. A., Jr., Franklin R. T., Agosin M. Conversion of α-Pinene to α-pinene oxide by rat liver and the bark beetle Dendoctonus terebrans. Pesticide Biochemistry and Physiology 1979; 10: 233–242
  • White R. A., Jr., Agosin M., Franklin R. T., Webb J. W. Bark beetle pheromones: evidence for physiological synthesis mechanisms and their ecological implications. Zeitschrift für Angewante Entomologie 1980; 90: 255–274
  • Wilson T. G., Hodgson E. Mechanism of microsomal mixed-function oxidase inhibitor from the housefly, Musca domestica. Pesticide Biochemistry and Physiology 1972; 2: 64–71
  • Wilkinson C. F. Role of mixed function oxidases in pesticide resistance. Pest Resistance to Pesticides: Challenge and Prospects, G. P. Georghiou, M. Saito. Plenum Press, NY 1983; 175–205
  • Wilkinson C. F., Brattsten L. B. Microsomal drug metabolizing enzymes in insects. Drug Metabolism Reviews 1972; 1: 153–228
  • Yu S. J., Terriere L. C. Hormonal modification of microsomal oxidase activity in the housefly. Life Sciences 1971; 10: 1179–1185
  • Yu S. J., Terriere L. C. Enzyme induction in the housefly, the specificity of cyclodiene insecticides. Pesticide Biochemistry and Physiology 1972; 2: 184–190
  • Yu S. J., Terriere L. C. Phenobarbital induction of detoxifying enzymes in resistant and susceptible houseflies. Pesticide Biochemistry and Physiology 1973; 3: 141–148
  • Yu S. J., Terriere L. C. Esterase and oxidase activity of housefly microsomes against juvenile hormone analogues containing branched chain ester groups and its induction by phenobarbital. Journal of Agricultural Food Chemistry 1977a; 25: 1333–1336
  • Yu S. J., Terriere L. C. Metabolism of 14C-hydropene (ethyl,3,7,11-trimethyl-2,4-dodecadieneoate), by microsomal oxidases and esterases of three species of Diptera. Journal of Agricultural Food Chemistry 1977b; 25: 1076–1080
  • Yu S. J., Terriere L. C. Metabolism of juvenile hormone I by microsomal oxidase, esterase and epoxide hydratase of Musca domestica and some comparisons with Phormia regina and Sarcophaga bullata. Pesticide Biochemistry and Physiology 1978; 9: 237–246
  • Yu S. J., Terriere L. C. Cytochrome P-450 in insects 1. Differences in the forms present in insecticide resistant and susceptible house flies. Pesticide Biochemistry and Physiology 1979a; 12: 239–248
  • Yu S. J., Terriere L. C. Cytochrome P-450 in insects 2. Multiple forms in the flesh fly (Sarcophaga bullata, Parker), and the blow fly (Phormia regina, Meigen). Pesticide Biochemistry and Physiology 1979b; 12: 249–256
  • Yu S. J. Microsomal oxidases in the mole crickets, Scapteriscus acletus Rehn and Hebard and Scapteriscus visinus, Scudder. Pesticide Biochemistry and Physiology 1982; 17: 170–176
  • Yu S. J. Microsomal sulphoxidation of phorate in the fall armyworm Spodoptera frugiperda. Pesticide Biochemistry and Physiology 1985; 23: 273–281

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.