Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 25, 1995 - Issue 4
32
Views
61
CrossRef citations to date
0
Altmetric
Research Article

Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3)

Pages 333-366 | Received 04 Oct 1994, Published online: 22 Sep 2008

References

  • Aoyama T., Korzekwa K., Nagata K., Adesnik M., Reiss A., Lapenson D. P., Gillette J., Gelboin H. V., Waxman D. J., Gonzalez F. J. Sequence requirements for cytochrome P-450 IIB1 catalytic activity. Journal of Biological Chemistry 1989; 264: 21327–21333
  • Atkins W. M., Sligar S. G. Molecular recognition in cytochrome P-450: alteration of regio-selective alkane hydroxylation via protein engineering. Journal of the American Chemical Society 1989; 111: 2715–2717
  • Baldwin J. E., Morris G. M., Richards W. G. Electron transport in cytochromes P-450 by covalent switching. Proceedings of the Royal Society of London, Series B 1991; 245: 43–52
  • Bernhardt R., Kraft R., Otto A., Ruckpaul K. Electrostatic interactions between cytochrome P450 LM2 and NADPH-cytochrome P450 reductase. Biomedica et Biophysica Acta 1988; 47: 581–592
  • Bernhardt R., Makower A., Jänig G.-R., Ruckpaul K. Selective chemical modification of a functionally linked lysine in cytochrome P-450 LM2. Biochimica et Biophysica Acta 1984; 785: 186–190
  • Bernhardt R., Pommerening K., Ruckpaul K. Modification of carboxyl groups on NADPH-cytochrome P-450 reductase involved in binding of cytochromes c and P-450 LM2. Biochemistry International 1987; 14: 823–832
  • Bernhardt R., Stiel H., Ruckpaul K. Distance between lysine 384 and heme of cytochrome P-450 LM2 (P450IIB4) studied by fluorescence energy transfer measurements. Biochemical and Biophysical Research Communications 1989; 163: 1282–1289
  • Bork R. W., Muto T., Beaune P. H., Srivastava P. K., Lloyd R. S., Guengerich F. P. Characterization of mRNA species related to human liver cytochrome P-450 nifedine oxidase and the regulation of catalytic activity. Journal of Biological Chemistry 1989; 264: 910–919
  • Clark M., Cramer R. D., Van Opdenbosch N. Validation of the general purpose Tripos 5.2 force field. Journal of Computational Chemistry 1989; 10: 982–1012
  • Davies M. D., Sligar S. G. Genetic variants in the putidaredoxin-cytochrome P-450cam electron transfer complex: identification of the residue responsible for redox-state-dependent conformers. Biochemistry 1992; 31: 11383–11389
  • Dayhoff M. O. Atlas of Protein Sequence and Structure, Vol. 5, Suppl. 3. National Biomedical Research Foundation, Washington 1978
  • De Lemos-Chiarandini C., Frey A. B., Sabatini D. D., Kreibich G. Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies. Journal of Cell Biology 1987; 104: 209–219
  • Edwards R. J., Murray B. P., Boobis A. R., Davies D. S. Identification and location of α-helices in mammalian cytochromes P450. Biochemistry 1989; 28: 3762–3770
  • Prediction of Protein Structure and the Principles of Protein Conformation, G. D. Fasman. Plenum, New York 1989
  • Fukuda T., Imai Y., Komori M., Nakamura M., Kusunose E., Satouchi K., Kusunose M. Replacement of Thr-303 of P4502E1 with serine modifies the regio-selectivity of its fatty acid hydroxylase activity. Journal of Biochemistry (Tokyo) 1993; 113: 7–12
  • Fulco A. J. 450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation. Annual Review of Pharmacology and Toxicology 1991; 31: 177–203
  • Furuya H., Shimizu T., Hatano M., Fujii-Kuriyama Y. Mutations at the distal and proximal sites of cytochrome P-450d changed regio-specificity of acetanilide hydroxylations. Biochemical and Biophysical Research Communications 1989a; 160: 669–676
  • Furuya H., Shimizu T., Hirano K., Hatano M., Fujii-Kuriyama Y., Raag R., Poulos T. L. Site-directed mutagenesis of rat liver cytochrome P-450d. Biochemistry 1989b; 28: 6848–6857
  • Gerber N. C., Sligar S. G. Catalytic mechanism of cytochrome P-450: evidence for a distal charge relay. Journal of the American Chemical Society 1992; 114: 8742–8743
  • Gerber N. C., Sligar S. G. A role for Asp-251 in cytochrome P-450cam oxygen activation. Journal of Biological Chemistry 1994; 269: 4260–4266
  • Gonzalez F. J., Matsunaga T., Nagata K., Meyer U. A., Nebert D. W., Pastewka J., Kozak C. A., Gillette J. R., Gelboin H. V., Hardwick J. P. Debrisoquine 4-hydroxyiase: characterization of a new P-450 gene subfamily, regulation chromosomal mapping and molecular analysis of the DA polymorphism. DNA 1987; 6: 149–161
  • Gonzalez F. J., Vilbois F., Hardwick J. P., McBride O. W., Nebert D. W., Gelboin H. V., Meyer U. A. Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and assignment of the CYP2D locus to chromosome 22. Genomics 1988; 2: 174–179
  • Gotoh O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. Journal of Biological Chemistry 1992; 267: 83–90
  • Gotoh O., Fujii-Kuriyama Y. Evolution, structure and gene regulation of cytochrome P-450. Frontiers in Biotransformation, Vol. 1, K. Ruckpaul, H. Rein. Taylor & Francis, London 1989; 195–243
  • Guengerich F. P. Metabolic activation of carcinogens. Pharmacology and Therapeutics 1992; 54: 17–61
  • Halpert J. R., He Y. Engineering of cytochrome P4502B1 specificity. Journal of Biological Chemistry 1993; 268: 4453–4457
  • Hara T., Kimura T. Active complex between adrenodoxin reductase and adrenodoxin in the cytochrome P-450scc reaction. Journal of Biochemistry 1989; 105: 601–605
  • Hasemann C. A., Ravichandran K. G., Peterson J. A., Deisenhofer J. Crystal structure and refinement of cytochrome P450terp at 2.3 Å resolution. Journal of Molecular Biology 1994; 236: 1169–1185
  • He Y., Luo Z., Klekotka P. A., Burnett V. L., Halpert J. R. Structural determinants of cytochrome P450–2B1 specificity: evidence for five substrate recognition sites. Biochemistry 1994; 33: 4419–4424
  • Hsu M.-H., Griffin K. J., Wang Y., Kemper B., Johnson E. F. A single amino acid substitution confers progesterone 6β-hydroxylase activity to rabbit cytochrome P4502C3. Journal of Biological Chemistry 1993; 268: 6939–6944
  • Imai Y., Nakamura M. The importance of threonine-301 from cytochromes P-450 laurate ω-1 hydroxylase and testosterone 16α hydroxylase in substrate binding as demonstrated by site-directed mutagenesis. Biochemical and Biophysical Research Communications 1989; 158: 717–722
  • Imai Y., Shimada H., Watanabe Y., Matsushima-Hibiya Y., Makino R., Koga H., Horiuchi T., Ishimura Y. Uncoupling of the cytochrome P-450cam monoxygenase reaction by a single mutation, threonine-252 to alanine and to valine. Proceedings of the National Academy of Sciences, USA 1989; 86: 7823–7827
  • Inouye K., Coon M. J. Properties of the tryptophan residue in rabbit liver microsomal cytochrome P-450 isozyme 2 as determined by fluorescence. Biochemical and Biophysical Research Communications 1985; 128: 676–682
  • Jshida N., Aoyama Y., Hatanaka R., Oyama Y., Imajo S., Ishiguro M., Oshima T., Nakazota H., Noguchi T., Maitra U. S., Mohan V. P., Sprinson D. B., Yoshida Y. Asingle amino acid substitution converts cytochrome P45014DM to an inactive form, cytochrome P450SG1. Biochemical and Biophysical Research Communications 1988; 155: 317–323
  • Iwasaki M., Lindberg R. L. P., Juvonen R. O., Negishi M. Site-directed mutagenesis of mouse steriod 7α-hydroxylase (cytochrome P-4507α): role of residue-209 in determining steroid-cytochrome P-450 interaction. Biochemical Journal 1993; 291: 569–573
  • Johnson E. F. Mapping determinants of the substrate selectivities of P450 enzymes by site-directed mutagenesis. Trends in Pharmaceutical Sciences 1992; 13: 122–126
  • Juvonen R. F. O., Iwasaki M., Negishi M. Structural function of residue-209 in coumarin 7-hydroxylase (P450coh). Journal of Biological Chemistry 1991; 266: 16431–16435
  • Kaminsky L. S., de Morais S. M. F., Faletto M. B., Dunbar D. A., Goldstein J. A. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Molecular Pharmacology 1993; 43: 234–239
  • Kawajiri K., Gotoh O., Sogawa K., Tagashira Y., Muramatsu M., Fujii-Kuriyama Y. Coding nucleotide sequence of 3-methylcholanthrene inducible cyrochrome P-450d cDNA from rat liver. Proceedings of the National Academy of Sciences, USA 1984; 81: 1649–1653
  • Khani S. C., Zaphiropoulos P. G., Fujita V. S., Porter T. D., Koop D. R., Coon M. J. cDNA and derived amino acid sequence of ethanol-inducible rabbit liver cytochrome P-450 isoenzyme 3a (P-450alc). Proceedings of the National Academy of Sciences, USA 1987; 84: 638–642
  • Kedzie K. M., Balfour C. A., Escobar G. Y., Grimm S. W., He Y., Peppert D. J., Regan J. W., Stevens J. C., Halpert J. R. Molecular basis for a functionally unique cytochrome P450IIB1 variant. Journal of Biological Chemistry 1991; 266: 22515–22521
  • Kimura S., Pastewka J., Gelboin H. V., Gonzalez F. J. cDNA and amino acid sequences of two members of the human P450IIC gene subfamily. Nucleic Acids Research 1984; 15: 10053–10054
  • Korzekwa K. R., Jones J. P. Predicting the cytochrome P450 mediated metabolism of xenobiotics. Pharmacogenetics 1993; 3: 1–18
  • Koymans L., Donné-Op deen Kelder G. M., Koppeie Te J. M., Vermeulen N. P. E. Cytochromes P450: their active site structure and mechanism of oxidation. Drug Metabolism Reviews 1993a; 25: 325–387
  • Koymans L. M. H., Vermeulen N. P. E., Baarslag A., Donné-Op den Kelder G. M. A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building. Journal of Computer-Aided Molecular Design 1993b; 7: 281–289
  • Kronbach T., Johnson E. F. An inhibitory monoclonal antibody binds in close proximity to a determinant for substrate binding in cytochrome P450IIC5. Journal of Biological Chemistry 1991; 266: 6215–6220
  • Kronbach T., Kemper B., Johnson E. F. A hypervariable region of P450IIC5 confers progesterone 21-hydroxylase activity to P450IIC1. Biochemistry 1991; 30: 6097–6102
  • Kronbach T., Larabee T. M., Johnson E. F. Hybrid cytochromes P-450 identify a substrate binding domain in P-450IIC5 and P-450IIC4. Proceedings of the National Academy of Sciences, USA 1989; 86: 8262–8265
  • Lewis D. F. V., Lake B. G. Molecular modelling of members of the CYP2A subfamily: application to studies of enzyme specificity. Xenobiotica 1995, submitted for publication
  • Lewis D. F. V., Moereels H. The sequence homologies of cytochromes P-450 and active site geometries. Journal of Computer-Aided Molecular Design 1992; 6: 235–252
  • Lindberg R. L. P., Negishi M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 1989; 339: 632–634
  • Matsubara S., Yamamoto S., Sogawa K., Yokotani N., Fujii-Kuriyama Y., Hainu M., Shively J. E., Gotoh O., Kusunose E., Kusunose M. cDNA cloning and inducible expression during pregnancy of the mRNA for rabbit pulmonary prostaglandin ω-hydroxylase (cytochrome P-450p-2). Journal of Biological Chemistry 1987; 262: 13366–13371
  • Matsunaga E., Zeugin T., Zanger U. M., Aoyama T., Meyer U. A., Gonzalez F. J. Sequence requirements for cytochrome P-450IID1 catalytic activity. Journal of Biological Chemistry 1990; 265: 17197–17201
  • Müller H.-G., Schunck W.-H., Kärgel E. Cytochromes P-450 in alkane-assimilating yeasts. Frontiers in Biotransformation, Vol. 4, K. Ruckpaul, H. Rein. Taylor & Francis, London 1991; 87–126
  • Munro A. W., Malarkey K., McKnight J., Thomson A. J., Kelly S. M., Price N. C., Lindsay J. G., Coggins J. R., Miles J. S. The role of tryptophan 97 of cytochrome P450 BM3 from Bacillus megaterium in catalytic function. Biochemical Journal 1994; 303: 423–28
  • Murray B. P., Edwards R. J., Murray S., Singleton A. M., Davies D. S., Boobis A. R. Human hepatic CYP1A1 and CYP1A2 content, determined with specific anti-peptide antibodies, correlates with the mutagenic activation of PhIP. Carcinogenesis 1993; 14: 585–592
  • Nelson D. R. Cytochrome P450 alignment and nomenclature, Internet location: Welch Laboratory. Johns Hopkins University, MarylandUSA 1993
  • Nelson D. R., Strobel H. W. Membrane topology of vertebrate cytochrome P450 proteins. Journal of Biological Chemistry 1988; 263: 6038–6050
  • Nelson D. R., Strobel H. W. Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam. Biochemistry 1989; 28: 656–660
  • Ortiz de Montellano P. R. Control of the catalytic activity of prosthetic heme by the structure of hemoproteins. Accounts of Chemical Research 1987; 20: 289–294
  • Palmer C. N. A., Richardson T. H., Griffin K. H., Hsu M.-H., Muerhoof A. S., Clark J. E., Johnson E. F. Characterization of a cDNA encoding a human kidney cytochrome P-450 4A fatty acid ω-hydroxylase and the cognate enzyme expressed in. Escherichia coli. Biochimica et Biophysica Acta 1993; 1172: 161–166
  • Porter T. D., Coon M. J. Cytochrome P-450: multiplicity of isoforms, substrates and catalytic and regulatory mechanisms. Journal of Biological Chemistry 1991; 266: 13469–13472
  • Porter T. D., Kasper C. B. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry 1986; 25: 1682–1687
  • Poulos T. L. Reversing enzyme specificity. Nature 1989; 339: 580–581
  • Poulos T. L., Finzel B. C., Howard A. J. Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 1986; 25: 5314–5322
  • Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. Journal of Molecular Biology 1987; 195: 687–700
  • Poulos T. L., Finzel B. C., Gunsalus I. C., Wagner G. C., Kraut J. The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. Journal of Biological Chemistry 1985; 260: 16122–16130
  • Raag R., Poulos T. L. The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450cam. Biochemistry 1989; 28: 917–922
  • Raag R., Poulos T. L. Crystal structures of cytochrome P-450cam complexed with camphane, thiocamphor and adamantane: factors controlling P-450 substrate hydroxylation. Biochemistry 1991; 30: 2674–2684
  • Ravichandran K. G., Boddupalli S. S., Hasemann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450s. Science 1993; 261: 731–736
  • Ruettinger R. T., Wen L. P., Fulco A. J. Coding nucleotide, 5′ regulatory and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450: NADPH-P450 reductase from. Bacillus megaterium. Journal of Biological Chemistry 1989; 264: 10987–10995
  • Sharonov Y. A., Pismensky V. F., Greschner S., Ruckpaul K. Low and ultra-low temperature magnetic circular dichroism studies of reduced cytochromes P-450 LM2 and P-450 LM2 and of photo-products of their CO-complexes: the spin state and axial ligation of heme iron. Biochemical and Biophysical Research Communications 1987; 146: 165–172
  • Smith D. A., Jones B. C. Speculations on the substrate structure-activity relationship (SSAR) of cytochrome P450 enzymes. Biochemical Pharmacology 1992; 44: 2089–2098
  • Sogawa K., Gotoh O., Kawajiri K., Fujii-Kuriyama Y. Distinct organization of methylcholanthrene- and phenobarbital-inducible cytochrome P-450 genes in the rat. Proceedings of the National Academy of Sciences, USA 1984; 81: 5066–5070
  • Song W. C., Funk C. D., Brash A. R. Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proceedings of the National Academy of Sciences, USA 1993; 90: 8519–8523
  • Stayton P. S., Poulos T. L., Sligar S. G. Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association. Biochemistry 1989; 28: 8201–8205
  • Stayton P. S., Sligar S. G. The cytochrome P450cam binding surface as defined by site-directed mutagenesis and electrostatic modelling. Biochemistry 1990; 29: 7381–7386
  • Straub P., Johnson E. F., Kemper B. Hydrophobic side chain requirements for lauric acid and progesterone hydroxylation at amino acid 113 in cytochrome P4502C2, a potential determinant of substrate specificity. Archives of Biochemistry and Biophysics 1993a; 306: 521–527
  • Straub P., Lloyd M., Johnson E. F., Kemper B. Cassette mutagenesis of a potential substrate recognition region of cytochrome P4502C2. Journal of Biological Chemistry 1993b; 268: 21997–22003
  • Swanson B. A., Dutton D. R., Lunetta J. M., Yang C. S., Ortiz de Montellano P. R. The active sites of cytochromes P450 IA1, IIB1, IIB2, and IIE1. Journal of Biological Chemistry 1991; 266: 19258–19264
  • Suwa Y., Mizukami Y., Sogawa K., Fujii-Kuriyama Y. Gene structure of a major form of phenobarbital-inducible cytochrome P-450 in rat liver. Journal of Biological Chemistry 1985; 260: 7980–7984
  • Tamburini P. P., Gibson G. G. Thermodynamic studies of the protein-protein interactions between cytochrome P-450 and cytochrome b5. Journal of Biological Chemistry 1983; 258: 13444–13452
  • Tuck S. F., Hiroya K., Shimizu T., Hatano M., Ortiz de Montellano P. R. The cytochrome P4501A2 active site: topology and perturbations caused by glutamic acid-318 and threonine-319 mutations. Biochemistry 1993; 32: 2548–2553
  • Turko I. V., Adamovich T. B., Kirillova N. M., Usanov S. A., Chashchin V. L. Cross-linking studies of the cholesterol hydroxylation system from bovine adrenocortical mitochondria. Biochimica et Biophysica Acta 1989; 996: 37–42
  • Unger B. P., Gunsalus I. C., Sligar S. G. Nucleotide sequence of the pseudomonas putida cytochrome P-450cam gene and its expression in. Escherichia coli. Journal of Biological Chemistry 1986; 261: 1158–1163
  • Williams R. W., Chang A., Juretic D., Loughran S. Secondary structure predictions and medium range interactions. Biochemica et Biophysica Acta 1987; 916: 200–204
  • Wilmot C. M., Thornton J. M. Analysis and prediction of the different types of β-turn in proteins. Journal of Molecular Biology 1988; 203: 221–232
  • Yamano S., Nagata K., Yamazoe Y., Kato R., Gelboin H. V., Gonzalez F. J. cDNA and deduced amino acid sequences of human P450IIA3 (CYP2A3). Nucleic Acids Research 1989; 17: 4888
  • Xia Z.-X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 Å resolution. Journal of Molecular Biology 1990; 212: 837–863

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.