105
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Enhanced Optomotor Efficiency by Expression of the Human Gene Superoxide Dismutase Primarily in Drosophila Motorneurons

, , , &
Pages 59-67 | Received 24 Nov 2012, Accepted 21 Feb 2013, Published online: 18 Apr 2013

REFERENCES

  • Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  • Gustafson, K., & Boulianne, G. L. (1996). Distinct expression patterns detected within individual tissues by the GAL4 enhancer trap technique. Genome, 39, 174–182.
  • Chan, W. P., Prete, F., & Dickinson, M. H. (1998). Visual input to the efferent control system of a fly's “gyroscope.” Science, 280, 289–292.
  • Clark, D. A., Bursztyn, L., Horowitz, M. A., Schnitzer, M. J., & Clandinin, T. R. (2011). Defining the computational structure of the motion detector in Drosophila. Neuron, 70, 1165–1177.
  • Collett, T. S. (1980). Angular tracking and the optomotor response an analysis of visual reflex interaction in a hoverfly. J Comp Physiol A, 140, 145–158.
  • Costantini, D., Monaghan, P., & Metcalfe, N. B. (2012). Early life experience primes resistance to oxidative stress. J Exp Biol, 215, 2820–2826.
  • Duistermars, B. J., Care, R. A., & Frye, M. A. (2012). Binocular interactions underlying the classic optomotor responses of flying flies. Front Behav Neurosci, 6, article 6, 1–19.
  • Fei, H., Chow, D. M., Chen, A., Romero-Calderon, R., Ong, W. S., Ackerson, L. C. et al. (2010). Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection. J Exp Biol, 213, 1717–1730.
  • Götz, K. G. (1970). Fractionation of Drosophila populations according to optomotor traits. J Exp Biol, 52, 419–436.
  • Haag, J., Wertz, A., & Borst, A. (2010). Central gating of fly optomotor response. Proc Natl Acad Sci U S A, 107, 20104–20109.
  • Hausen, K. (1982a). Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: Structure and signals. Biol Cybern, 45, 143–156.
  • Hausen, K. (1982b). Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol Cybern, 46, 67–79.
  • Hassenstein, B., & Reichardt, W. (1956). Systemtheoretische Analyse der Zeit, Reihenfolgen und Vorzeichenauswertung bei der Bewegungsperzeption des Russelkafers Chlorophanus. Z Naturforsch B Chem Biochem Biophys Biol Verwandten Gebiete, 11, 513–524.
  • Hecht, S., & Wald, G. (1933). The influence of intensity on the visual functions of Drosophila. Proc Natl Acad Sci U S A, 19, 964–972.
  • Heisenberg, M. (1972). Comparative behavioral studies on 2 visual mutants of Drosophila. J Comp Physiol, 80, 119–136.
  • Heisenberg, M., Buchner, E. (1977). The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol, 117, 127–162.
  • Heisenberg, M., Wonneberger, R., & Wolf, R. (1978). Optomotor-blind (H31): A Drosophila mutant of the lobula plate giant neurons. J Comp Physiol, 124, 287–296.
  • Hernfindez de Salomon, C., & Spatz, H. C. (1983). Colour vision in Drosophila melanogaster: Wavelength discrimination. J Comp Physiol, 150, 31–37.
  • Kirby, K, Jensen, L. T., Binnington, J., Hilliker, A. J., Ulloa, J., Culotta, V. C., & Phillips, J. P. (2008). Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone. J Biol Chem, 283, 35393–35401.
  • Kalmus, H. (1943). The optomotor responses of some eye mutants of Drosophila. J Genet, 45, 206–213.
  • Krapp, H. G., & Hengstenberg, R. (1996). Estimation of self-motion by optic flow processing in single visual interneurons. Nature, 384, 463–466.
  • Krapp, H. G., Hengstenberg, R., & Egelhaaf, M. (2001). Binocular contributions to optic flow processing in the fly visual system. J Neurophysiol, 85, 724–734.
  • Lehmann, F. O., & Dickinson, M. H. (1998). The control of wing kinematics and flight forces in fruit flies (Drosophila spp.). J Exp Biol, 201, 385–401.
  • Manolakis, G. G., & Ingle, V. K. (2011). Applied digital signal processing: Theory and practice. Cambridge UK: Cambridge University Press.
  • Miller, M. S., Lekkas, P., Braddock, J. M., Farman, G. P., Ballif, B. A., Irving, T. C., Maughan, D. W., & Vigoreaux, J. O. (2008). Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J, 95, 2391–2401.
  • Mronz, M., & Lehmann, F. (2008). The free-flight response of Drosophila to motion of the visual environment. J Exp Biol, 211, 2026–2045.
  • Parkes, T. L., Elia, A. J., Dickinson, D., Hilliker, A. J., Phillips, J. P., & Boulianne, G. L. (1998). Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet, 19, 171–174.
  • Petrosyan, A., Gonçalves, O. F., Hsieh, I., Phillips, J. P., & Saberi, K. (2013). Enhanced flight and locomotion by overexpression of the human gene SOD1 primarily in Drosophila motorneurons. (under review).
  • Petrosyan, A., Hsieh, I., & Saberi, K. (2007). Age-dependent stability of sensorimotor functions in the life-extended Drosophila mutant methuselah. Behav Genet, 37, 585–594.
  • Pflugfelder, G. O. (1998). Genetic lesions in Drosophila behavioural mutants. Behav Brain Res, 95, 3–15.
  • Phillips, J. P., Parkes, T. L., & Hilliker, A. J. (2000). Targeted neuronal gene expression and longevity in Drosophila. Exp Geront, 35, 1157–1164.
  • Poggio, T., & Reichardt, W. (1976). Visual control of orientation behaviour in the fly. Part II. Towards the underlying neural interactions. Q Rev Biophys, 9, 377–438.
  • Reichardt, W. (1961). Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In W. A. Rosenblith (Ed.), Principles of sensory communications (pp. 303–317). New York: Wiley.
  • Reichardt, W., & Poggio, T. (1976). Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Q Rev Biophys, 9, 311–375.
  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.
  • Sabatelli, M., Madia, F., Conte, A., Luigetti, M., Zollino, M., Mancuso, I., et al. (2008). Natural history of young-adult amyotrophic lateral sclerosis. Neurology, 16, 876–881.
  • Schnell, B., Joesch, M., Forstner, F., Raghu, S. V., Otsuna, H., Ito, K., et al. (2010). Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J Neurophysiol, 103, 1646–1657.
  • Siegel, I. (1967). Heritability and threshold determinations of the optomotor response in Drosophila melanogaster. Anim Behav, 15, 299–306.
  • Van Swinderen, B., & Flores, K.A. (2006). Attention-like processes underlying optomotor performance in a Drosophila choice maze. J Neurobiol, 67, 129–145.
  • Theobald, J. C., Ringach, D. L., & Frye, M. A. (2010). Dynamics of optomotor responses in Drosophila to perturbations in optic flow. J Exp Biol, 213, 1366–1375.
  • Vogel, S. (1966). Flight in Drosophila. I. Flight performance of tethered flies. J Exp Biol, 44, 567–578.
  • Wardill, T. J., List, O., Li, X. F., Dongre, S., McCulloch, M., Ting, C. Y., et al. (2012). Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science, 336, 925–931.
  • Warzecha, A., & Egelhaaf, M. (1996). Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable. Phil Trans R Soc Lond B, 351, 1579–1591.
  • Wheeler, J. C., Bieschke, E. T., & Tower, J. (1995). Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc Natl Acad Sci U S A, 92, 10408–10412.
  • Yeh, E., Gustafson, K., & Boulianne, G. L. (1995). Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc. Natl. Acad. Sci. U S A, 92, 7036–7040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.