474
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Evolutionary Development of Neural Systems in Vertebrates and Beyond

Pages 69-85 | Received 05 Feb 2013, Accepted 21 Mar 2013, Published online: 07 Jun 2013

REFERENCES

  • Airey, D. C., Robbins, A. I., Enzinger, K. M., Wu, F., & Collins, C. E. (2005). Variation in the cortical area map of C57BL/6J and DBA/2J inbred mice predicts strain identity. BMC Neurosci, 6, 18.
  • Aragona, B. J., & Wang, Z. (2009). Dopamine regulation of social choice in a monogamous rodent species. Front Behav Neurosci, 3, 15.
  • Arendt, D., Denes, A. S., Jekely, G., & Tessmar-Raible, K. (2008a). The evolution of nervous system centralization. Philos Trans R Soc Lond B Biol Sci, 363, 1523–1528.
  • Arendt, D., & Nubler-Jung, K. (1999). Comparison of early nerve cord development in insects and vertebrates. Development, 126, 2309–2325.
  • Bachy, I., Berthon, J., & Retaux, S. (2002). Defining pallial and subpallial divisions in the developing Xenopus forebrain. Mech Dev, 117, 163–172.
  • Barash, Y., Calarco, J. A., Gao, W., Pan, Q., Wang, X., Shai, O., Blencowe, B. J., & Frey, B. J. (2010). Deciphering the splicing code. Nature, 465, 53–59.
  • Barton, R. A. (1996). Neocortex size and behavioural ecology in primates. Proc R Soc B Biol Sci, 263, 173–177.
  • Barton, R. A., & Harvey, P. H. (2000). Mosaic evolution of brain structure in mammals. Nature, 405, 1055–1058.
  • Beets, I., Janssen, T., Meelkop, E., Temmerman, L., Suetens, N., Rademakers, S., Jansen, G., Schoofs, L. (2012). Vasopressin/Oxytocin-related signaling regulates gustatory associative learning in C. elegans. Science, 338, 543–545.
  • Bishop, K. M., Goudreau, G., & O’Leary, D. D. (2000). Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science, 288, 344–349.
  • Boire, D., & Baron, G. (1994). Allometric comparison of brain and main brain subdivisions in birds. J Hirnforsch, 35, 49–66.
  • Bradley, B. J., Pedersen, A., & Mundy, N. I. (2009). Blue eyes in lemurs and humans: Same phenotype, different genetic mechanism. Am J Phys Anthropol, 139, 269–273.
  • Brotherton, P. N. M., & Komers, P. E. (2003). Mate guarding and the evolution of social monogamy in mammals. In Monogamy: Mating strategies and partnerships in birds, humans and other mammals (pp. 42–58), edited by U. H. Reichard and C. Boesch. Cambridge, UK: Cambridge University Press.
  • Brown, J. L., Morales, V., & Summers, K. (2010). A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am Nat, 175, 436–446.
  • Brox, A., Puelles, L., Ferreiro, B., & Medina, L. (2004). Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods. J Comp Neurol, 474, 562–577.
  • Calarco, J. A., Xing, Y., Caceres, M., Calarco, J. P., Xiao, X., Pan, Q., Lee, C., Preuss, T. M., & Blencowe, B. J. (2007). Global analysis of alternative splicing differences between humans and chimpanzees. Gene Dev, 21, 2963–2975.
  • Calarco, J. A., Zhen, M., & Blencowe, B. J. (2011). Networking in a global world: Establishing functional connections between neural splicing regulators and their target transcripts. RNA, 17, 775–791.
  • Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell, 134, 25–36.
  • Cha, H. J., Byrom, M., Mead, P. E., Ellington, A. D., Wallingford, J. B., & Marcotte, E. M. (2012). Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent. PLoS Biol, 10, e1001379.
  • Charvet, C. J., & Striedter, G. F. (2010). Bigger brains cycle faster before neurogenesis begins: A comparison of brain development between chickens and bobwhite quail. Proc R Soc B Biol Sci, 277, 3469–3475.
  • Charvet, C. J., & Striedter, G. F. (2011). Developmental modes and developmental mechanisms can channel brain evolution. Front Neuroanat, 5, 4.
  • Chenn, A., & Walsh, C. A. (2002). Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science, 297, 365–369.
  • Chung, C. Y., Seo, H., Sonntag, K. C., Brooks, A., Lin, L., & Isacson, O. (2005). Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet, 14, 1709–1725.
  • Clancy, B., Darlington, R. B., & Finlay, B. L. (2001). Translating developmental time across mammalian species. Neuroscience, 105, 7–17.
  • Clancy, B., Finlay, B. L., Darlington, R. B., & Anand, K. J. (2007). Extrapolating brain development from experimental species to humans. Neurotoxicology, 28, 931–937.
  • Clark, D. A., Mitra, P. P., & Wang, S. S. (2001). Scalable architecture in mammalian brains. Nature, 411, 189–193.
  • Cnotka, J., Mohle, M., & Rehkamper, G. (2008). Navigational experience affects hippocampus size in homing pigeons. Brain Behav Evol, 72, 233–238.
  • Cornell, R. A., & Ohlen, T. V. (2000). Vnd/nkx, ind/gsh, and msh/msx: Conserved regulators of dorsoventral neural patterning?. Curr Opin Neurobiol, 10, 63–71.
  • Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Res, 653, 278–284.
  • Crews, D. (2005). Evolution of neuroendocrine mechanisms that regulate sexual behavior. Trends Endocrinol Metab, 16, 354–361.
  • de Jong, T. R., Chauke, M., Harris, B. N., & Saltzman, W. (2009). From here to paternity: Neural correlates of the onset of paternal behavior in California mice (Peromyscus californicus). Horm Behav, 56, 220–231.
  • de Vries, G. J., & Panzica, G. C. (2006). Sexual differentiation of central vasopressin and vasotocin systems in vertebrates: Different mechanisms, similar endpoints. Neuroscience, 138, 947–955.
  • de Winter, W., & Oxnard, C. E. (2001). Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature, 409, 710–714.
  • Dehay, C., & ennedy, H. (2007). Cell-cycle control and cortical development. Nat Rev Neurosci, 8, 438–450.
  • Denes, A. S., Jekely, G., Steinmetz, P. R., Raible, F., Snyman, H., Prud’homme, B., Ferrier, D. E., Balavoine, G., & Arendt, D. (2007). Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell, 129, 277–288.
  • Dominguez, J. M., & Hull, E. M. (2005). Dopamine, the medial preoptic area, and male sexual behavior. Physiol Behav, 86, 356–368.
  • Dominguez, L., Gonzalez, A., & Moreno, N. (2010). Sonic hedgehog expression during Xenopus laevis forebrain development. Brain Res, 1347, 19–32.
  • Doya, K. (2008). Modulators of decision making. Nat Neurosci, 11, 410–416.
  • Dye, C. A., Abbott, C. W., & Huffman, K. J. (2012). Bilateral enucleation alters gene expression and intraneocortical connections in the mouse. Neural Dev, 7, 5.
  • Farries, M. A. (2004). The avian song system in comparative perspective. Ann N Y Acad Sci, 1016, 61–76.
  • Farris, S. M. (2008a). Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary. Brain Behav Evol, 72, 106–122.
  • Farris, S. M. (2008b). Structural, functional and developmental convergence of the insect mushroom bodies with higher brain centers of vertebrates. Brain Behav Evol, 72, 1–15.
  • Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain, 114 (Pt 5), 2283–2301.
  • Fetherston, I. A., Scott, M. P., & Traniello, J. F.A. (2010). Parental care in burying beetles: The organization of male and female brood-care behavior. Ethology, 85, 177–190.
  • Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.
  • Finlay, B. L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Behav Brain Sci, 24, 263–278; discussion 278–308.
  • Flames, N., & Hobert, O. (2009). Gene regulatory logic of dopamine neuron differentiation. Nature, 458, 885–889.
  • Gardner, M. G., Bull, C., & Cooper, S. (2002). High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii. Mol Ecol, 11, 1787–1794.
  • Garrison, J. L., Macosko, E. Z., Bernstein, S., Pokala, N., Albrecht, D. R. & Bargmann, C. I. (2012). Oxytocin/Vasopressin-related peptides have an ancient role in reproductive behavior. Science, 338, 540–543.
  • Godwin, J., & Thompson, R. (2012). Nonapeptides and social behavior in fishes. Horm Behav, 61, 230–238.
  • Gonzalez-Voyer, A., & Kolm, N. (2010). Sex, ecology and the brain: Evolutionary correlates of brain structure volumes in Tanganyikan cichlids. PLoS ONE, 5, e14355.
  • Gonzalez-Voyer, A., Winberg, S., & Kolm, N. (2009a). Brain structure evolution in a basal vertebrate clade: Evidence from phylogenetic comparative analysis of cichlid fishes. BMC Evol Biol, 9, 238.
  • Gonzalez-Voyer, A., Winberg, S., & Kolm, N. (2009b). Distinct evolutionary patterns of brain and body size during adaptive radiation. Evolution, 63, 2266–2274.
  • Goodman, C. S., & Coughlin, B. C. (2000). The evolution of evo-devo biology. Proc Natl Acad Sci U S A, 97, 4424–4425.
  • Goodson, J. L. (2005). The vertebrate social behavior network: Evolutionary themes and variations. Horm Behav, 48, 11–22.
  • Goodson, J. L. (2008). Nonapeptides and the evolutionary patterning of sociality. Prog Brain Res, 170, 3–15.
  • Goodson, J. L. (2013). Deconstructing sociality, social evolution and relevant nonapeptide functions. Psychoneuroendocrinology, 38, 465–478.
  • Goodson, J. L., & Bass, A. H. (2001). Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Brain Res Rev, 35, 246–265.
  • Goodson, J. L., & Thompson, R. R. (2010). Nonapeptide mechanisms of social cognition, behavior and species-specific social systems. Curr Opin Neurobiol, 20, 784–794.
  • Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010). Prolactin, Oxytocin, and the development of paternal behavior across the first six months of fatherhood. Horm Behav, 58, 513–518.
  • Gray, P. A., Fu, H., Luo, P., Zhao, Q., Yu, J., Ferrari, A., Tenzen, T., Yuk, D. I., Tsung, E. F., Cai, Z., Alberta, J. A., Cheng, L. P., Liu, Y., Stenman, J. M., Valerius, M. T., Billings, N., Kim, H. A., Greenberg, M. E., McMahon, A. P., Rowitch, D. H., Stiles, C. D., & Ma, Q. (2004). Mouse brain organization revealed through direct genome-scale TF expression analysis. Science, 306, 2255–2257.
  • Grimm, J., Mueller, A., Hefti, F., & Rosenthal, A. (2004). Molecular basis for catecholaminergic neuron diversity. Proc Natl Acad Sci U S A, 101, 13891–13896.
  • Gvilia, I., Xu, F., McGinty, D., & Szymusiak, R. (2006). Homeostatic regulation of sleep: A role for preoptic area neurons. J Neurosci, 26, 9426–9433.
  • Harris-Warrick, R. M., & Marder, E. (1991). Modulation of neural networks for behavior. Annu Rev Neurosci, 14, 39–57.
  • Hauptmann, G., & Gerster, T. (2000). Regulatory gene expression patterns reveal transverse and longitudinal subdivisions of the embryonic zebrafish forebrain. Mech Dev, 91, 105–118.
  • Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annu Rev Neurosci, 29, 565–598.
  • Insel, T. R., Wang, Z. X., & Ferris, C. F. (1994). Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. J Neurosci, 14, 5381–5392.
  • Insel, T. R., & Young, L. J. (2000). Neuropeptides and the evolution of social behavior. Curr Opin Neurobiol, 10, 784–789.
  • Insel, T. R., Young, L., & Wang, Z. (1997). Central oxytocin and reproductive behaviours. Rev Reprod, 2, 28–37.
  • Ishiwata, T., Hasegawa, H., Yazawa, T., Otokawa, M., & Aihara, Y. (2002). Functional role of the preoptic area and anterior hypothalamus in thermoregulation in freely moving rats. Neurosci Lett, 325, 167–170.
  • Iwaniuk, A. N., & Hurd, P. L. (2005). The evolution of cerebrotypes in birds. Brain Behav Evol, 65, 215–230.
  • Joshua, M., Adler, A., & Bergman, H. (2009a). The dynamics of dopamine in control of motor behavior. Curr Opin Neurobiol, 19, 615–620.
  • Joshua, M., Adler, A., Prut, Y., Vaadia, E., Wickens, J. R., & Bergman, H. (2009b). Synchronization of midbrain dopaminergic neurons is enhanced by rewarding events. Neuron, 62, 695–704.
  • Kahn, D. M., & Krubitzer, L. (2002). Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals. Proc Natl Acad Sci U.S.A, 99, 11429–11434.
  • Katz, P. S., & Harris-Warrick, R. M. (1999). The evolution of neuronal circuits underlying species-specific behavior. Curr Opin Neurobiol, 9, 628–633.
  • Kiecker, C., & Lumsden, A. (2012). The role of organizers in patterning the nervous system. Annu Rev Neurosci, 35, 347–367.
  • Klafke, R. (2008). Expression and functional analysis of the development of mesencephalic dopamine neurons in the chicken embryo. Doktors der Naturwissenschaften dissertation, Technische Universita t Mu nchen, Munich.
  • Kocher, T. D. (2004). Adaptive evolution and explosive speciation: The cichlid fish model. Nat Rev Genet, 5, 288–298.
  • Kornack, & D. R., Rakic, P. (1998). Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci U S A, 95, 1242–1246.
  • Krebs, J. R., & Davies, N. B. (1997). Behavioural ecology: An evolutionary approach. Oxford, UK: Blackwell.
  • Kriegstein, A., Noctor, S., & Martinez-Cerdeno, V. (2006). Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci, 7, 883–890.
  • Krubitzer, L., & Kaas, J. (2005). The evolution of the neocortex in mammals: How is phenotypic diversity generated?. Curr Opin Neurobiol, 15, 444–453.
  • Krubitzer, L. A., & Seelke, A. M. (2012). Cortical evolution in mammals: The bane and beauty of phenotypic variability. Proc Natl Acad Sci U S A, 109 (Suppl 1), 10647–10654.
  • Kuwamura, T., Yogo, Y., & Nakashima, Y. (1993). Size-assortative monogamy and paternal egg care in a coral goby Paragobiodon echinocephalus. Ethology, 95, 65–75.
  • Lefebvre, L., Whittle, P., Lascaris, E., & Finkelstein, A. (1997). Feeding innovations and forebrain size in birds. Anim Behav, 53, 549–560.
  • Leingartner, A., Thuret, S., Kroll, T. T., Chou, S. J., Leasure, J. L., Gage, F. H., & O’Leary, D. D. (2007). Cortical area size dictates performance at modality-specific behaviors. Proc Natl Acad Sci U S A, 104, 4153–4158.
  • Leung, C. H., Abebe, D. F., Earp, S. E., Goode, C. T., Grozhik, A. V., Mididoddi, P., & Maney, D. L. (2011). Neural distribution of vasotocin receptor mRNA in two species of songbird. Endocrinology, 152, 4865–4881.
  • Lichtneckert, R., & Reichert, H. (2005). Insights into the urbilaterian brain: Conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity, 94, 465–477.
  • Lin, C. F., Mount, S. M., Jarmolowski, A., & Makalowski, W. (2010). Evolutionary dynamics of U12-type spliceosomal introns. BMC Evol Biol, 10, 47.
  • Lowe, C. J., Terasaki, M., Wu, M., Freeman, R. M., Jr., Runft, L., Kwan, K., Haigo, S., Aronowicz, J., Lander, E., Gruber, C., Smith, M., Kirschner, M., & Gerhart, J. (2006). Dorsoventral patterning in hemichordates: Insights into early chordate evolution. PLoS Biol, 4, e291.
  • Lowe, C. J., Wu, M., Salic, A., Evans, L., Lander, E., Stange-Thomann, N., Gruber, C. E., Gerhart, J., & Kirschner, M. (2003). Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell, 113, 853–865.
  • Luo, G. R., Chen, Y., Li, X. P., Liu, T. X., & Le, W. D. (2008). Nr4a2 is essential for the differentiation of dopaminergic neurons during zebrafish embryogenesis. Mol Cell Neurosci, 39, 202–210.
  • Marder, E., Bucher, D., Schulz, D. J., & Taylor, A. L. (2005). Invertebrate central pattern generation moves along. Curr Biol, 15, R685–R699.
  • McGary, K. L., Park, T. J., Woods, J. O., Cha, H.J., Wallingford, J. B., & Marcotte, E. M. (2010). Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci U S A, 107, 6544–6549.
  • McGowan, L., Kuo, E., Martin, A., Monuki, E. S., & Striedter, G. (2011). Species differences in early patterning of the avian brain. Evolution, 65, 907–911.
  • Medina, L., & Abellan, A. (2009). Development and evolution of the pallium. Semin Cell Dev Biol, 20, 698–711.
  • Minakata, H. (2010). Oxytocin/vasopressin and gonadotropin-releasing hormone from cephalopods to vertebrates. Ann N Y Acad Sci, 1200, 33–42.
  • Mizutani, C. M., Nie, Q., Wan, F. Y., Zhang, Y. T., Vilmos, P., Sousa-Neves, R., Bier, E., Marsh, J. L., & Lander, A. D. (2005). Formation of the BMP activity gradient in the Drosophila embryo. Dev Cell, 8, 915–924.
  • Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol, 14, 69–97.
  • Monuki, E. S., Porter, F. D., & Walsh, C. A. (2001). Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron, 32, 591–604.
  • Monuki, E. S., & Walsh, C. A. (2001). Mechanisms of cerebral cortical patterning in mice and humans. Nat Neurosci, 4 (Suppl), 1199–1206.
  • Moore, F. L., & Lowry, C. A. (1998). Comparative neuroanatomy of vasotocin and vasopressin in amphibians and other vertebrates. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol, 119, 251–260.
  • Moreno, N., Gonzalez, A., & Retaux, S. (2009). Development and evolution of the subpallium. Semin Cell Dev Biol, 20, 735–743.
  • Murakami, Y., Ogasawara, M., Satoh, N., Sugahara, F., Myojin, M., Hirano, S., & Kuratani, S. (2002). Compartments in the lamprey embryonic brain as revealed by regulatory gene expression and the distribution of reticulospinal neurons. Brain Res Bull, 57, 271–275.
  • Murakami, Y., & Watanabe, A. (2009). Development of the central and peripheral nervous systems in the lamprey. Dev Growth Differ, 51, 197–205.
  • Muscedere, M. L., & Traniello, J. F. A. (2012). Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste- and age-related patterns of worker brain organization. PLoS ONE, 7, e31618.
  • Nalepa, C. A. (1991). Ancestral transfer of symbionts between cockroaches and termites: An unlikely scenario. Proc R Soc B Biol Sci, 246, 185–189.
  • Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Ann N Y Acad Sci, 877, 242–257.
  • Nishikawa, K. C. (2002). Evolutionary convergence in nervous systems: Insights from comparative phylogenetic studies. Brain Behav Evol, 59, 240–249.
  • Northcutt, R. G. (2001). Lancelet lessons: Evaluating a phylogenetic model. J Comp Neurol, 435, 391–393.
  • Noveen, A., Daniel, A., & Hartenstein, V. (2000). Early development of the Drosophila mushroom body: The roles of eyeless and dachshund. Development, 127, 3475–3488.
  • Numan, M. (1974). Medial preoptic area and maternal behavior in the female rat. J Comp Physiol Psychol, 87, 746–759.
  • O’Connell, L. A., Fontenot, M. R., & Hofmann, H. A. (2013). Neurochemical profiling of dopaminergic neurons in the forebrain of a cichlid fish, Astatotilapia burtoni. J Chem Neuroanat, 47, 106–115.
  • O’Connell, L. A., & Hofmann, H. A. (2011a). Genes, hormones, and circuits: An integrative approach to study the evolution of social behavior. Front Neuroendocrinol, 32, 320–335.
  • O’Connell, L. A., & Hofmann, H. A. (2011b). The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. J Comp Neurol, 519, 3599–3639.
  • O’Connell, L. A., & Hofmann, H. A. (2012). Evolution of a vertebrate social decision-making network. Science, 336, 1154–1157.
  • O’Connell, L. A., Matthews, B. J., & Hofmann, H. A. (2012). Isotocin regulates paternal care in a monogamous cichlid fish. Horm Behav, 61, 725–733.
  • O’Leary, D. D., Chou, S. J., & Sahara, S. (2007). Area patterning of the mammalian cortex. Neuron, 56, 252–269.
  • Osorio, J., Mazan, S., & Retaux, S. (2005). Organisation of the lamprey (Lampetra fluviatilis) embryonic brain: Insights from LIM-homeodomain, Pax and hedgehog genes. Dev Biol, 288, 100–112.
  • Oumi, T., Ukena, K., Matsushima, O., Ikeda, T., Fujita, T., Minakata, H., & Nomoto, K. (1994). Annetocin: An oxytocin-related peptide isolated from the earthworm, Eisenia foetida. Biochem Biophys Res Commun, 198, 393–399.
  • Oumi, T., Ukena, K., Matsushima, O., Ikeda, T., Fujita, T., Minakata, H., & Nomoto, K. (1996). Annetocin, an annelid oxytocin-related peptide, induces egg-laying behavior in the earthworm, Eisenia foetida. J Exp Zool, 276, 151–156.
  • Parker, K. J., & Lee, T. M. (2001). Central vasopressin administration regulates the onset of facultative paternal behavior in Microtus pennsylvanicus (meadow voles). Horm Behav, 39, 285–294.
  • Pfaff, D. W., Kow, L. M., Loose, M. D., & Flanagan-Cato, L. M. (2008). Reverse engineering the lordosis behavior circuit. Horm Behav, 54, 347–354.
  • Phelps, S. M. (2002). Like minds: Evolutionary convergence in nervous systems. Trends Ecol Evol, 17, 158–159.
  • Pilaz, L. J., Patti, D., Marcy, G., Ollier, E., Pfister, S., Douglas, R. J., Betizeau, M., Gautier, E., Cortay, V., Doerflinger, N., Kennedy, H., & Dehay, C. (2009). Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc Natl Acad Sci U S A, 106, 21924–21929.
  • Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J., Smiga, S., & Rubenstein, J.L. (2000). Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol, 424, 409–438.
  • Puelles, L., & Medina, L. (2002). Field homology as a way to reconcile genetic and developmental variability with adult homology. Brain Res Bull, 57, 243–255.
  • Puelles, L., & Rubenstein, J. L. R. (2003). Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci, 26, 469–476.
  • Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci, 9, 545–556.
  • Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proc Natl Acad Sci U S A, 99, 4436–4441.
  • Reep, R. L., Finlay, B. L., & Darlington, R. B. (2007). The limbic system in mammalian brain evolution. Brain Behav Evol, 70, 57–70.
  • Rehkamper, G., Frahm, H. D., & Cnotka, J. (2008). Mosaic evolution and adaptive brain component alteration under domestication seen on the background of evolutionary theory. Brain Behav Evol, 71, 115–126.
  • Reiner, A., Medina, L., & Veenman, C. L. (1998). Structural and functional evolution of the basal ganglia in vertebrates. Brain Res Brain Res Rev, 28, 235–285.
  • Reiner, A., & Wullimann, M. F. (2004). The gain in the brain is plain when evo meets devo. BioEssays, 26, 1026–1030.
  • Reynolds, J. D., & Székely, T. (1997). The evolution of parental care in shorebirds: Life histories, ecology, and sexual selection. Behav Ecol, 8, 126–134.
  • Rilling, J. K., King-Casas, B., & Sanfey, A. G. (2008). The neurobiology of social decision-making. Curr Opin Neurobiol, 18, 159–165.
  • Rose, G. J. (2004). Insights into neural mechanisms and evolution of behaviour from electric fish. Nat Rev Neurosci, 5, 943–951.
  • Rubenstein, J. L. R., & Puelles, L. (1994). Homeobox gene-expression during development of the vertebrate brain. Curr Top Dev Biol, 29, 1–63.
  • Scharff, C., & Petri, J. (2011). Evo-devo, deep homology and FoxP2: Implications for the evolution of speech and language. Philos Trans R Soc B Biol Sci, 366, 2124–2140.
  • Schilling, T. F., & Knight, R. D. (2001). Origins of anteroposterior patterning and Hox gene regulation during chordate evolution. Philos Trans R Soc B Biol Sci, 356, 1599–1613.
  • Schultz, W. (1997). Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol, 7, 191–197.
  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.
  • Shubin, N., Tabin, C., & Carroll, S. (2009). Deep homology and the origins of evolutionary novelty. Nature, 457, 818–823.
  • Shulman, J. M., de Jager, P. L., & Feany, M. B. (2011). Parkinson’s disease: Genetics and pathogenesis. Annu Rev Pathol, 6, 193–222.
  • Slack, J. M. (1993). Embryonic induction. Mech Dev, 41, 91–107.
  • Smidt, M. P., Smits, S. M., Bouwmeester, H., Hamers, F. P., van der Linden, A. J., Hellemons, A. J., Graw, J., & Burbach, J. P. (2004). Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development, 131, 1145–1155.
  • Smidt, M. P., van Schaick, H. S., Lanctot, C., Tremblay, J. J., Cox, J. J., van der Kleij, A. A., Wolterink, G., Drouin, J., & Burbach, J. P. (1997). A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci U S A, 94, 13305–13310.
  • Stafflinger, E., Hansen, K. K., Hauser, F., Schneider, M., Cazzamali, G., Williamson, M., & Grimmelikhuijzen, C. J. (2008). Cloning and identification of an oxytocin/vasopressin-like receptor and its ligand from insects. Proc Natl Acad Sci U S A, 105, 3262–3267.
  • Striedter, G. F. (2005). Principles of brain evolution. Sunderland, MA: Sinauer.
  • Striedter, G. F., & Charvet, C. J. (2008). Developmental origins of species differences in telencephalon and tectum size: Morphometric comparisons between a parakeet (Melopsittacus undulatus) and a quail (Colinus virgianus). J Comp Neurol, 507, 1663–1675.
  • Sur, M., & Rubenstein, J. L. (2005). Patterning and plasticity of the cerebral cortex. Science, 310, 805–810.
  • Sussel, L., Marin, O., Kimura, S., & Rubenstein, J. L. (1999). Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: Evidence for a transformation of the pallidum into the striatum. Development, 126, 3359–3370.
  • Sylvester, J. B., Pottin, K., & Streelman, J. T. (2011). Integrated brain diversification along the early neuraxes. Brain Behav Evol, 78, 237–247.
  • Sylvester, J. B., Rich, C. A., Loh, Y. H., van Staaden, M. J., Fraser, G. J., & Streelman, J. T. (2010). Brain diversity evolves via differences in patterning. Proc Natl Acad Sci U S A, 107, 9718–9723.
  • Takahashi, T., Nowakowski, R. S., & Caviness, V. S., Jr. (1995). The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci, 15, 6046–6057.
  • Takuwa-Kuroda, K., Iwakoshi-Ukena, E., Kanda, A., & Minakata, H. (2003). Octopus, which owns the most advanced brain in invertebrates, has two members of vasopressin/oxytocin superfamily as in vertebrates. Regul Pept, 115, 139–149.
  • Tessmar-Raible, K., Raible, F., Christodoulou, F., Guy, K., Rembold, M., Hausen, H., & Arendt, D. (2007). Conserved sensory-neurosecretory cell types in annelid and fish forebrain: Insights into hypothalamus evolution. Cell, 129, 1389–1400.
  • Tomer, R., Denes, A. S., Tessmar-Raible, K., & D. (2010). Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell, 142, 800–809.
  • Toth, A. L., & Robinson, G. E. (2007). Evo-devo and the evolution of social behavior. Trends Genet, 23, 334–341.
  • Urbach, R., & Technau, G. M. (2003). Segment polarity and DV patterning gene expression reveals segmental organization of the Drosophila brain. Development, 130, 3607–3620.
  • Urbach, R., & Technau, G. M. (2004). Neuroblast formation and patterning during early brain development in Drosophila. BioEssays, 26, 739–751.
  • Vaccarino, F. M., Schwartz, M. L., Raballo, R., Nilsen, J., Rhee, J., Zhou, M., Doetschman, T., Coffin, J. D., Wyland, J. J., & Hung, Y. T. (1999). Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci, 2, 246–253.
  • van den Akker, W. M., Brox, A., Puelles, L., Durston, A. J., & Medina, L. (2008). Comparative functional analysis provides evidence for a crucial role for the homeobox gene Nkx2.1/Titf-1 in forebrain evolution. J Comp Neurol, 506, 211–223.
  • van Kesteren, R. E., Smit, A. B., de Lange, R. P., Kits, K. S., van Golen, F. A., van der Schors, R. C., de With, N. D., Burke, J. F., & Geraerts, W. P. (1995). Structural and functional evolution of the vasopressin/oxytocin superfamily: Vasopressin-related conopressin is the only member present in Lymnaea, and is involved in the control of sexual behavior. J Neurosci, 15, 5989–5998.
  • Vidal-Gadea, A., Topper, S., Young, L., Crisp, A., Kressin, L., Elbel, E., Maples, T., Brauner, M., Erbguth, K., Axelrod, A., Gottschalk, A., Siegel, D., & Pierce-Shimomura, J. T. (2011). Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Natl Acad Sci U S A, 108, 17504–17509.
  • Wagenaar, D. A., Hamilton, M. S., Huang, T., Kristan, W. B., & French, K. A. (2010). A hormone-activated central pattern generator for courtship. Curr Biol, 20, 487–495.
  • Wang, S., & Turner, E. E. (2010). Expression of dopamine pathway genes in the midbrain is independent of known ETS transcription factor activity. J Neurosci, 30, 9224–9227.
  • Wang, Z., Ferris, C. F., & de Vries, G. J. (1994). Role of septal vasopressin innervation in paternal behavior in prairie voles (Microtus ochrogaster). Proc Natl Acad Sci U S A, 91, 400–404.
  • Weygoldt, P. (2009). Evolution of parental care in dart poison frogs (Amphibia: Anura: Dendrobatidae). J Zool Syst Evol Res, 25, 51–67.
  • Whiteman, E., & Côté, I. (2007). Monogamy in marine fishes. Biol Rev, 79, 351–375.
  • Wickens, J. R., Budd, C. S., Hyland, B.I., & Arbuthnott, G. W. (2007). Striatal contributions to reward and decision making: Making sense of regional variations in a reiterated processing matrix. Ann N Y Acad Sci, 1104, 192–212.
  • Wise, R. A. (2004a). Dopamine, learning and motivation. Nat Rev Neurosci, 5, 483–494.
  • Wise, R. A. (2004b). Rewards wanted: Molecular mechanisms of motivation. Discov Med, 4, 180–186.
  • Wood, R. I. (1998). Integration of chemosensory and hormonal input in the male Syrian hamster brain. Ann N Y Acad Sci, 855, 362–372.
  • Wullimann, M.F., & Rink, E. (2002). The teleostean forebrain: A comparative and developmental view based on early proliferation, Pax6 activity and catecholaminergic organization. Brain Res Bull, 57, 363–370.
  • Yopak, K.E., Lisney, T.J., Darlington, R.B., Collin, S.P., Montgomery, J.C., & Finlay, B.L. (2010). A conserved pattern of brain scaling from sharks to primates. Proc Natl Acad Sci U S A, 107, 12946–12951.
  • Zurner, M., & Schoch, S. (2009). The mouse and human Liprin-alpha family of scaffolding proteins: Genomic organization, expression profiling and regulation by alternative splicing. Genomics, 93, 243–253.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.