1,190
Views
24
CrossRef citations to date
0
Altmetric
Review

Lessons From Sleeping Flies: Insights from Drosophila melanogaster on the Neuronal Circuitry and Importance of Sleep

&
Pages 23-42 | Received 14 Dec 2012, Accepted 28 Mar 2013, Published online: 23 May 2013

REFERENCES

  • Agosto, J., Choi, J. C., Parisky, K. M., Stilwell, G., Rosbash, M., & Griffith, L. C. (2008). Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci, 11, 354–359.
  • Allada, R., & Chung, B. Y. (2010). Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol, 72, 605–624.
  • Allada, R., & Siegel, J. M. (2008). Unearthing the phylogenetic roots of sleep. Curr Biol, 18, R670–R679.
  • Allebrandt, K. V., Amin, N., Muller-Myhsok, B., Esko, T., Teder-Laving, M., Azevedo, R. V., et al. (2013). A K(ATP) channel gene effect on sleep duration: From genome-wide association studies to function in Drosophila. Mol Psychiatry, 18, 122–132.
  • Andretic, R., Kim, Y. C., Jones, F. S., Han, K. A., & Greenspan, R. J. (2008). Drosophila D1 dopamine receptor mediates caffeine-induced arousal. Proc Natl Acad Sci U S A, 105, 20392–20397.
  • Andretic, R., & Shaw, P. J. (2005). Essentials of sleep recordings in Drosophila: Moving beyond sleep time. Methods Enzymol, 393, 759–772.
  • Andretic, R., van Swinderen, B., & Greenspan, R. J. (2005). Dopaminergic modulation of arousal in Drosophila. Curr Biol, 15, 1165–1175.
  • Aschoff, J. (1966). Circadian activity pattern with two peaks. Ecology, 47, 657–662.
  • Borbely, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. J Biol Rhythms, 14, 557–568.
  • Born, J., & Feld, G. B. (2012). Sleep to upscale, sleep to downscale: Balancing homeostasis and plasticity. Neuron, 75, 933–935.
  • Bushey, D., Huber, R., Tononi, G., & Cirelli, C. (2007). Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci, 27, 5384–5393.
  • Bushey, D., Tononi, G., & Cirelli, C. (2009). The Drosophila fragile X mental retardation gene regulates sleep need. J Neurosci, 29, 1948–1961.
  • Bushey, D., Tononi, G., & Cirelli, C. (2011). Sleep and synaptic homeostasis: Structural evidence in Drosophila. Science, 332, 1576–1581.
  • Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neurosci Biobehav Rev, 8, 269–300.
  • Carhan, A., Tang, K., Shirras, C. A., Shirras, A. D., & Isaac, R. E. (2011). Loss of Angiotensin-converting enzyme-related (ACER) peptidase disrupts night-time sleep in adult Drosophila melanogaster. J Exp Biol, 214, 680–686.
  • Catterson, J. H., Knowles-Barley, S., James, K., Heck, M. M., Harmar, A. J., & Hartley, P. S. (2010). Dietary modulation of Drosophila sleep-wake behaviour. PLoS ONE, 5, e12062.
  • Chauvette, S., Seigneur, J., & Timofeev, I. (2012). Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron, 75, 1105–1113.
  • Chemelli, R. M., Willie, J. T., Sinton, C. M., Elmquist, J. K., Scammell, T., Lee, C., et al. (1999). Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell, 98, 437–451.
  • Chung, B. Y., Kilman, V. L., Keath, J. R., Pitman, J. L., & Allada, R. (2009). The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol, 19, 386–390.
  • Cirelli, C. (2009). The genetic and molecular regulation of sleep: From fruit flies to humans. Nat Rev Neurosci, 10, 549–560.
  • Cirelli, C., Bushey, D., Hill, S., Huber, R., Kreber, R., Ganetzky, B., et al. (2005a). Reduced sleep in Drosophila Shaker mutants. Nature, 434, 1087–1092.
  • Cirelli, C., LaVaute, T. M., & Tononi, G. (2005b). Sleep and wakefulness modulate gene expression in Drosophila. J Neurochem, 94, 1411–1419.
  • Collins, B., & Blau, J. (2007). Even a stopped clock tells the right time twice a day: Circadian timekeeping in Drosophila. Pflugers Arch, 454, 857–867.
  • Crocker, A., & Sehgal, A. (2008). Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J Neurosci, 28, 9377–9385.
  • Crocker, A., & Sehgal, A. (2010). Genetic analysis of sleep. Genes Dev, 24, 1220–1235.
  • Crocker, A., Shahidullah, M., Levitan, I. B., & Sehgal, A. (2010). Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron, 65, 670–681.
  • Cyran, S. A., Buchsbaum, A. M., Reddy, K. L., Lin, M. C., Glossop, N. R., Hardin, P. E., et al. (2003). vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell, 112, 329–341.
  • Dabbish, N. S., & Raizen, D. M. (2011). GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans. J Neurosci, 31, 15932–15943.
  • Dahdal, D., Reeves, D. C., Ruben, M., Akabas, M. H., & Blau, J. (2010). Drosophila pacemaker neurons require g protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms. Neuron, 68, 964–977.
  • De, J., Varma, V., & Sharma, V. K. (2012). Adult emergence rhythm of fruit flies Drosophila melanogaster under seminatural conditions. J Biol Rhythms, 27, 280–286.
  • Dean, T., Xu, R., Joiner, W., Sehgal, A., & Hoshi, T. (2011). Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K(+) channels. J Neurosci, 31, 11387–11395.
  • Dissel, S., Codd, V., Fedic, R., Garner, K. J., Costa, R., Kyriacou, C. P., et al. (2004). A constitutively active cryptochrome in Drosophila melanogaster. Nat Neurosci, 7, 834–840.
  • Donelson, N., Kim, E. Z., Slawson, J. B., Vecsey, C. G., Huber, R., & Griffith, L. C. (2012). High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE, 7, e37250.
  • Donlea, J., Leahy, A., Thimgan, M. S., Suzuki, Y., Hughson, B. N., Sokolowski, M. B., et al. (2012). Foraging alters resilience/vulnerability to sleep disruption and starvation in Drosophila. Proc Natl Acad Sci U S A, 109, 2613–2618.
  • Donlea, J. M., Ramanan, N., & Shaw, P. J. (2009). Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science, 324, 105–108.
  • Donlea, J. M., Thimgan, M. S., Suzuki, Y., Gottschalk, L., & Shaw, P. J. (2011). Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science, 332, 1571–1576.
  • Dubruille, R., & Emery, P. (2008). A plastic clock: How circadian rhythms respond to environmental cues in Drosophila. Mol Neurobiol, 38, 129–145.
  • Everson, C. A. (1995). Functional consequences of sustained sleep deprivation in the rat. Behav Brain Res, 69, 43–54.
  • Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., et al. (2008). GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron, 57, 353–363.
  • Fogle, K. J., Parson, K. G., Dahm, N. A., & Holmes, T. C. (2011). CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science, 331, 1409–1413.
  • Foltenyi, K., Greenspan, R. J., & Newport, J. W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci, 10, 1160–1167.
  • Frank, M. G. (2012). Erasing synapses in sleep: Is it time to be SHY?Neural Plast, 2012, 264378.
  • Franken, P., & Dijk, D. J. (2009). Circadian clock genes and sleep homeostasis. Eur J Neurosci, 29, 1820–1829.
  • Freeman, A., Pranski, E., Miller, R. D., Radmard, S., Bernhard, D., Jinnah, H. A., et al. (2012). Sleep fragmentation and motor restlessness in a Drosophila model of restless legs syndrome. Curr Biol, 22, 1142–1148.
  • Ganguly-Fitzgerald, I., Donlea, J., & Shaw, P. J. (2006). Waking experience affects sleep need in Drosophila. Science, 313, 1775–1781.
  • Gerstner, J. R., Vanderheyden, W. M., Shaw, P. J., Landry, C. F., & Yin, J. C. (2011). Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila. PLoS ONE, 6, e15890.
  • Gilestro, G. F. (2012). Video tracking and analysis of sleep in Drosophila melanogaster. Nat Protocols, 7, 995–1007.
  • Gilestro, G. F., & Cirelli, C. (2009). pySolo: A complete suite for sleep analysis in Drosophila. Bioinformatics, 25, 1466–1467.
  • Gilestro, G. F., Tononi, G., & Cirelli, C. (2009). Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science, 324, 109–112.
  • Glossop, N. R., Lyons, L. C., & Hardin, P. E. (1999). Interlocked feedback loops within the Drosophila circadian oscillator. Science, 286, 766–768.
  • Gonzalo-Gomez, A., Turiegano, E., Leon, Y., Molina, I., Torroja, L., & Canal, I. (2012). Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila. PLoS ONE, 7, e36477.
  • Gordon, M. D., & Scott, K. (2009). Motor control in a Drosophila taste circuit. Neuron, 61, 373–384.
  • Grima, B., Dognon, A., Lamouroux, A., Chelot, E., & Rouyer, F. (2012). CULLIN-3 Controls TIMELESS Oscillations in the Drosophila Circadian Clock. PLoS Biol, 10, e1001367.
  • Gronke, S., Beller, M., Fellert, S., Ramakrishnan, H., Jackle, H., & Kuhnlein, R. P. (2003). Control of fat storage by a Drosophila PAT domain protein. Curr Biol, 13, 603–606.
  • Gronke, S., Mildner, A., Fellert, S., Tennagels, N., Petry, S., Muller, G., et al. (2005). Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab, 1, 323–330.
  • Grosmark, A. D., Mizuseki, K., Pastalkova, E., Diba, K., & Buzsaki, G. (2012). REM sleep reorganizes hippocampal excitability. Neuron, 75, 1001–1007.
  • Guo, F., Yi, W., Zhou, M., & Guo, A. (2011). Go signaling in mushroom bodies regulates sleep in Drosophila. Sleep, 34, 273–281.
  • Harbison, S. T., Carbone, M. A., Ayroles, J. F., Stone, E. A., Lyman, R. F., & Mackay, T. F. (2009a). Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nat Genet, 41, 371–375.
  • Harbison, S. T., Mackay, T. F., & Anholt, R. R. (2009b). Understanding the neurogenetics of sleep: Progress from Drosophila. Trends Genet, 25, 262–269.
  • Harbison, S. T., & Sehgal, A. (2008). Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics, 178, 2341–2360.
  • Harbison, S. T., & Sehgal, A. (2009). Energy stores are not altered by long-term partial sleep deprivation in Drosophila melanogaster. PLoS ONE, 4, e6211.
  • Hedges, S. B. (2002). The origin and evolution of model organisms. Nat Rev Genet, 3, 838–849.
  • Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nat Rev Neurosci, 4, 266–275.
  • Helfrich-Förster, C. (1995). The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci U S A, 92, 612–616.
  • Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., et al. (2000a). Rest in Drosophila is a sleep-like state. Neuron, 25, 129–138.
  • Hendricks, J. C., Sehgal, A., & Pack, A. I. (2000b). The need for a simple animal model to understand sleep. Prog Neurobiol, 61, 339–351.
  • Hendricks, J. C., Williams, J. A., Panckeri, K., Kirk, D., Tello, M., Yin, J. C., et al. (2001). A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat Neurosci, 4, 1108–1115.
  • Huber, R., Hill, S. L., Holladay, C., Biesiadecki, M., Tononi, G., & Cirelli, C. (2004). Sleep homeostasis in Drosophila melanogaster. Sleep, 27, 628–639.
  • Iber, C., Ancoli-Israel, S., Chesson, A. L., Jr., Quan, S. F. (2007). The AASM manual for the scoring of sleep and associated events: Rules, terminology and technical specifications (1st ed.). Westchester, IL: American Academy of sleep medicine.
  • Ilius, M., Wolf, R., & Heisenberg, M. (1994). The central complex of Drosophila melanogaster is involved in flight control: Studies on mutants and mosaics of the gene ellipsoid body open. J Neurogenet, 9, 189–206.
  • Isaac, R. E., Li, C., Leedale, A. E., & Shirras, A. D. (2010). Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proc Biol Sci, 277, 65–70.
  • Ishimoto, H., & Kitamoto, T. (2010). The steroid molting hormone Ecdysone regulates sleep in adult Drosophila melanogaster. Genetics, 185, 269–281.
  • Ishimoto, H., Lark, A., & Kitamoto, T. (2012). Factors that differentially affect daytime and nighttime sleep in Drosophila melanogaster. Front Neurol, 3, 24.
  • Jan, L. Y., & Jan, Y. N. (2012). Voltage-gated potassium channels and the diversity of electrical signalling. J Physiol, 590(Pt 11), 2591–2599.
  • Joiner, W. J., Crocker, A., White, B. H., & Sehgal, A. (2006). Sleep in Drosophila is regulated by adult mushroom bodies. Nature, 441, 757–760.
  • Jung, C. M., Melanson, E. L., Frydendall, E. J., Perreault, L., Eckel, R. H., & Wright, K. P. (2011). Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol, 589(Pt 1), 235–244.
  • Kaneko, M., & Hall, J. C. (2000). Neuroanatomy of cells expressing clock genes in Drosophila: Transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol, 422, 66–94.
  • Keene, A. C., Duboue, E. R., McDonald, D. M., Dus, M., Suh, G. S., Waddell, S., et al. (2010). Clock and cycle limit starvation-induced sleep loss in Drosophila. Curr Biol, 20, 1209–1215.
  • Kim, E. Y., Bae, K., Ng, F. S., Glossop, N. R., Hardin, P. E., & Edery, I. (2002). Drosophila CLOCK protein is under posttranscriptional control and influences light-induced activity. Neuron, 34, 69–81.
  • Koh, K., Joiner, W. J., Wu, M. N., Yue, Z., Smith, C. J., & Sehgal, A. (2008). Identification of SLEEPLESS, a sleep-promoting factor. Science, 321, 372–376.
  • Kumar, S., Chen, D., & Sehgal, A. (2012). Dopamine acts through Cryptochrome to promote acute arousal in Drosophila. Genes Dev, 26, 1224–1234.
  • Kume, K., Kume, S., Park, S. K., Hirsh, J., & Jackson, F. R. (2005). Dopamine is a regulator of arousal in the fruit fly. J Neurosci, 25, 7377–7384.
  • Kuo, T. H., Pike, D. H., Beizaeipour, Z., & Williams, J. A. (2010). Sleep triggered by an immune response in Drosophila is regulated by the circadian clock and requires the NFkappaB Relish. BMC Neurosci, 11, 17.
  • Landgraf, D., Shostak, A., & Oster, H. (2012). Clock genes and sleep. Pflugers Arch, 463, 3–14.
  • Lebestky, T., Chang, J. S., Dankert, H., Zelnik, L., Kim, Y. C., Han, K. A., et al. (2009). Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron, 64, 522–536.
  • Lesku, J. A., Roth, T. C., 2nd, Amlaner, C. J., & Lima, S. L. (2006). A phylogenetic analysis of sleep architecture in mammals: The integration of anatomy, physiology, and ecology. Am Nat, 168, 441–453.
  • Li, X., Yu, F., & Guo, A. (2009). Sleep deprivation specifically impairs short-term olfactory memory in Drosophila. Sleep, 32, 1417–1424.
  • Lin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., et al. (1999). The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell, 98, 365–376.
  • Lin, Y., Stormo, G. D., & Taghert, P. H. (2004). The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J Neurosci, 24, 7951–7957.
  • Linford, N. J., Chan, T. P., & Pletcher, S. D. (2012). Re-patterning sleep architecture in Drosophila through gustatory perception and nutritional quality. PLoS Genet, 8, e1002668.
  • Liu, Q., Liu, S., Kodama, L., Driscoll, M. R., & Wu, M. N. (2012). Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol, 22, 2114–2123.
  • Liu, W., Guo, F., Lu, B., & Guo, A. (2008). amnesiac regulates sleep onset and maintenance in Drosophila melanogaster. Biochem Biophys Res Commun, 372, 798–803.
  • Liu, Z. W., Gan, G., Suyama, S., & Gao, X. B. (2011). Intracellular energy status regulates activity in hypocretin/orexin neurones: A link between energy and behavioural states. J Physiol, 589(Pt 17), 4157–4166.
  • Lone, S. R., & Sharma, V. K. (2012). Or47b receptor neurons mediate sociosexual interactions in the fruit fly Drosophila melanogaster. J Biol Rhythms, 27, 107–116.
  • Lu, B., Liu, W., Guo, F., & Guo, A. (2008). Circadian modulation of light-induced locomotion responses in Drosophila melanogaster. Genes Brain Behav, 7, 730–739.
  • Lyamin, O. I., Manger, P. R., Ridgway, S. H., Mukhametov, L. M., & Siegel, J. M. (2008). Cetacean sleep: An unusual form of mammalian sleep. Neurosci Biobehav Rev, 32, 1451–1484.
  • Mackiewicz, M., Shockley, K. R., Romer, M. A., Galante, R. J., Zimmerman, J. E., Naidoo, N., et al. (2007). Macromolecule biosynthesis: A key function of sleep. Physiol Genomics, 31, 441–457.
  • Mahowald, M. W., & Schenck, C. H. (2005). Insights from studying human sleep disorders. Nature, 437, 1279–1285.
  • Mao, Z., & Davis, R. L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: Anatomical and physiological heterogeneity. Front Neural Circuits, 3, 5.
  • Martin, J. R., Raabe, T., & Heisenberg, M. (1999). Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster. J Comp Physiol A, 185, 277–288.
  • McCarthy, E. V., Wu, Y., Decarvalho, T., Brandt, C., Cao, G., & Nitabach, M. N. (2011). Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J Neurosci, 31, 8181–8193.
  • Mignot, E. (2008). Why we sleep: The temporal organization of recovery. PLoS Biol, 6, e106.
  • Mustard, J. A., Beggs, K. T., & Mercer, A. R. (2005). Molecular biology of the invertebrate dopamine receptors. Arch Insect Biochem Physiol, 59, 103–117.
  • Naidoo, N., Casiano, V., Cater, J., Zimmerman, J., & Pack, A. I. (2007). A role for the molecular chaperone protein BiP/GRP78 in Drosophila sleep homeostasis. Sleep, 30, 557–565.
  • Naidoo, N., Ferber, M., Galante, R. J., McShane, B., Hu, J. H., Zimmerman, J., et al. (2012). Role of Homer proteins in the maintenance of sleep-wake states. PLoS ONE, 7, e35174.
  • Nakai, Y., Horiuchi, J., Tsuda, M., Takeo, S., Akahori, S., Matsuo, T., et al. (2011). Calcineurin and its regulator sra/DSCR1 are essential for sleep in Drosophila. J Neurosci, 31, 12759–12766.
  • Nitabach, M. N., Wu, Y., Sheeba, V., Lemon, W. C., Strumbos, J., Zelensky, P. K., et al. (2006). Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J Neurosci, 26, 479–489.
  • Nitz, D. A., van Swinderen, B., Tononi, G., & Greenspan, R. J. (2002). Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr Biol, 12, 1934–1940.
  • Pace-Schott, E. F., & Hobson, J. A. (2002). The neurobiology of sleep: Genetics, cellular physiology and subcortical networks. Nat Rev Neurosci, 3, 591–605.
  • Pan, Y., Zhou, Y., Guo, C., Gong, H., Gong, Z., & Liu, L. (2009). Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Memory, 16, 289–295.
  • Parisky, K. M., Agosto, J., Pulver, S. R., Shang, Y., Kuklin, E., Hodge, J. J., et al. (2008). PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron, 60, 672–682.
  • Parsons, M. P., & Hirasawa, M. (2010). ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: Implications for brain energetics during arousal. J Neurosci, 30, 8061–8070.
  • Pauli, A., Valen, E., Lin, M. F., Garber, M., Vastenhouw, N. L., Levin, J. Z., et al. (2012). Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res, 22, 577–591.
  • Pitman, J. L., McGill, J. J., Keegan, K. P., & Allada, R. (2006). A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature, 441, 753–756.
  • Porkka-Heiskanen, T., Alanko, L., Kalinchuk, A., & Stenberg, D. (2002). Adenosine and sleep. Sleep Med Rev, 6, 321–332.
  • Potdar, S., & Sheeba, V. (2012). Large ventral lateral neurons determine the phase of evening activity peak across photoperiods in Drosophila melanogaster. J Biol Rhythms, 27, 267–279.
  • Prabhakaran, P. M., & Sheeba, V. (2012). Sympatric Drosophilid species melanogaster and ananassae differ in temporal patterns of activity. J Biol Rhythms, 27, 365–376.
  • Raizen, D. M., Zimmerman, J. E., Maycock, M. H., Ta, U. D., You, Y. J., Sundaram, M. V., et al. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 451, 569–572.
  • Rattenborg, N. C., Mandt, B. H., Obermeyer, W. H., Winsauer, P. J., Huber, R., Wikelski, M., et al. (2004). Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biol, 2, e212.
  • Rechtschaffen, A., & Bergmann, B. M. (2002). Sleep deprivation in the rat: An update of the 1989 paper. Sleep, 25, 18–24.
  • Rechtschaffen, A., Gilliland, M. A., Bergmann, B. M., & Winter, J. B. (1983). Physiological correlates of prolonged sleep deprivation in rats. Science, 221, 182–184.
  • Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C., & Taghert, P. H. (1999). A Pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell, 99, 791–802.
  • Roeder, T. (1999). Octopamine in invertebrates. Prog Neurobiol, 59, 533–561.
  • Rogulja, D., & Young, M. W. (2012). Control of sleep by cyclin A and its regulator. Science, 335, 1617–1621.
  • Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437, 1257–1263.
  • Sehgal, A., & Mignot, E. (2011). Genetics of sleep and sleep disorders. Cell, 146, 194–207.
  • Seugnet, L., Boero, J., Gottschalk, L., Duntley, S. P., & Shaw, P. J. (2006). Identification of a biomarker for sleep drive in flies and humans. Proc Natl Acad Sci U S A, 103, 19913–19918.
  • Seugnet, L., Galvin, J. E., Suzuki, Y., Gottschalk, L., & Shaw, P. J. (2009a). Persistent short-term memory defects following sleep deprivation in a Drosophila model of Parkinson disease. Sleep, 32, 984–992.
  • Seugnet, L., Suzuki, Y., Donlea, J. M., Gottschalk, L., & Shaw, P. J. (2011a). Sleep deprivation during early-adult development results in long-lasting learning deficits in adult Drosophila. Sleep, 34, 137–146.
  • Seugnet, L., Suzuki, Y., Merlin, G., Gottschalk, L., Duntley, S. P., & Shaw, P. J. (2011b). Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Curr Biol, 21, 835–840.
  • Seugnet, L., Suzuki, Y., Thimgan, M., Donlea, J., Gimbel, S. I., Gottschalk, L., et al. (2009b). Identifying sleep regulatory genes using a Drosophila model of insomnia. J Neurosci, 29, 7148–7157.
  • Seugnet, L., Suzuki, Y., Vine, L., Gottschalk, L., & Shaw, P. J. (2008). D1 receptor activation in the mushroom bodies rescues sleep-loss-induced learning impairments in Drosophila. Curr Biol, 18, 1110–1117.
  • Shafer, O. T., Kim, D. J., Dunbar-Yaffe, R., Nikolaev, V. O., Lohse, M. J., & Taghert, P. H. (2008). Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron, 58, 223–237.
  • Shang, Y., Griffith, L. C., & Rosbash, M. (2008). Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc Natl Acad Sci U S A, 105, 19587–19594.
  • Shang, Y., Haynes, P., Pirez, N., Harrington, K. I., Guo, F., Pollack, J., et al. (2011). Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat Neurosci, 14, 889–895.
  • Shaw, P. (2003). Awakening to the behavioral analysis of sleep in Drosophila. J Biol Rhythms, 18, 4–11.
  • Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287, 1834–1837.
  • Shaw, P. J., & Franken, P. (2003). Perchance to dream: Solving the mystery of sleep through genetic analysis. J Neurobiol, 54, 179–202.
  • Shaw, P. J., Tononi, G., Greenspan, R. J., & Robinson, D. F. (2002). Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature, 417, 287–291.
  • Sheeba, V. (2008). The Drosophila melanogaster circadian pacemaker circuit. J Genet, 87, 485–493.
  • Sheeba, V., Fogle, K. J., Kaneko, M., Rashid, S., Chou, Y. T., Sharma, V. K., et al. (2008a). Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr Biol, 18, 1537–1545.
  • Sheeba, V., Gu, H., Sharma, V. K., O’Dowd, D. K., & Holmes, T. C. (2008b). Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J Neurophysiol, 99, 976–988.
  • Shimizu, H., Shimoda, M., Yamaguchi, T., Seong, K. H., Okamura, T., & Ishii, S. (2008). Drosophila ATF-2 regulates sleep and locomotor activity in pacemaker neurons. Mol Cell Biol, 28, 6278–6289.
  • Siegel, J. M. (2005). Clues to the functions of mammalian sleep. Nature, 437, 1264–1271.
  • Singh, N., Lorbeck, M. T., Zervos, A., Zimmerman, J., & Elefant, F. (2010). The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem, 115, 493–504.
  • Sokolowski, M. B. (2001). Drosophila: Genetics meets behaviour. Nat Rev Genet, 2, 879–890.
  • Soshnev, A. A., Ishimoto, H., McAllister, B. F., Li, X., Wehling, M. D., Kitamoto, T., et al. (2011). A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics, 189, 455–468.
  • St. Johnston, D. (2002). The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet, 3, 176–188.
  • Stavropoulos, N., & Young, M. W. (2011). Insomniac and Cullin-3 regulate sleep and wakefulness in Drosophila. Neuron, 72, 964–976.
  • Steriade, M. (2005). Sleep, epilepsy and thalamic reticular inhibitory neurons. Trends Neurosci, 28, 317–324.
  • Takahama, K., Tomita, J., Ueno, T., Yamazaki, M., Kume, S., & Kume, K. (2012). Pan-neuronal knockdown of the c-Jun N-terminal kinase (JNK) results in a reduction in sleep and longevity in Drosophila. Biochem Biophys Res Commun, 417, 807–811.
  • Thimgan, M. S., Suzuki, Y., Seugnet, L., Gottschalk, L., & Shaw, P. J. (2010). The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss. PLoS Biol, 8, e466.
  • Tobler, I., & Schwierin, B. (1996). Behavioural sleep in the giraffe (Giraffa camelopardalis) in a zoological garden. J Sleep Res, 5, 21–32.
  • Tomita, J., Mitsuyoshi, M., Ueno, T., Aso, Y., Tanimoto, H., Nakai, Y., et al. (2011). Pan-neuronal knockdown of calcineurin reduces sleep in the fruit fly, Drosophila melanogaster. J Neurosci, 31, 13137–13146.
  • Tononi, G., & Cirelli, C. (2003). Sleep and synaptic homeostasis: A hypothesis. Brain Res Bull, 62, 143–150.
  • Tononi, G., & Cirelli, C. (2012). Time to be SHY?Some comments on sleep and synaptic homeostasis. Neural Plast, 2012, 415250.
  • Ueno, T., Tomita, J., Tanimoto, H., Endo, K., Ito, K., Kume, S., et al. (2012). Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat Neurosci, 15, 1516–1523.
  • van Swinderen, B., & Andretic, R. (2003). Arousal in Drosophila. Behav Process, 64, 133–144.
  • van Swinderen, B., & Andretic, R. (2011). Dopamine in Drosophila: Setting arousal thresholds in a miniature brain. Proc Biol Sci, 278, 906–913.
  • van Swinderen, B., Nitz, D. A., & Greenspan, R. J. (2004). Uncoupling of brain activity from movement defines arousal states in Drosophila. Curr Biol, 14, 81–87.
  • Vanin, S., Bhutani, S., Montelli, S., Menegazzi, P., Green, E. W., Pegoraro, M., et al. (2012). Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature, 484, 371–375.
  • Venken, K. J., Simpson, J. H., & Bellen, H. J. (2011). Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron, 72, 202–230.
  • Wang, J. W., Humphreys, J. M., Phillips, J. P., Hilliker, A. J., & Wu, C. F. (2000). A novel leg-shaking Drosophila mutant defective in a voltage-gated K(+)current and hypersensitive to reactive oxygen species. J Neurosci, 20, 5958–5964.
  • Wang, J. W., & Wu, C. F. (2010). Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism. J Neurogenet, 24, 67–74.
  • Williams, J. A., Sathyanarayanan, S., Hendricks, J. C., & Sehgal, A. (2007). Interaction between sleep and the immune response in Drosophila: A role for the NFkappaB relish. Sleep, 30, 389–400.
  • Wisor, J. P., O’Hara, B. F., Terao, A., Selby, C. P., Kilduff, T. S., Sancar, A., et al. (2002). A role for cryptochromes in sleep regulation. BMC Neurosci, 3, 20.
  • Wu, M. N., Ho, K., Crocker, A., Yue, Z., Koh, K., & Sehgal, A. (2009). The effects of caffeine on sleep in Drosophila require PKA activity, but not the adenosine receptor. J Neurosci, 29, 11029–11037.
  • Wu, M. N., Joiner, W. J., Dean, T., Yue, Z., Smith, C. J., Chen, D., et al. (2010). SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nat Neurosci, 13, 69–75.
  • Wu, Y., Bolduc, F. V., Bell, K., Tully, T., Fang, Y., Sehgal, A., et al. (2008). A Drosophila model for Angelman syndrome. Proc Natl Acad Sci U S A, 105, 12399–12404.
  • Wülbeck, C., Grieshaber, E., & Helfrich-Förster, C. (2008). Pigment-dispersing factor (PDF) has different effects on Drosophila’s circadian clocks in the accessory medulla and in the dorsal brain. J Biol Rhythms, 23, 409–424.
  • Yamanaka, A., Beuckmann, C. T., Willie, J. T., Hara, J., Tsujino, N., Mieda, M., et al. (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron, 38, 701–713.
  • Yamazaki, M., Tomita, J., Takahama, K., Ueno, T., Mitsuyoshi, M., Sakamoto, E., et al. (2012). High calorie diet augments age-associated sleep impairment in Drosophila. Biochem Biophys Res Commun, 417, 812–816.
  • Yellen, G. (2002). The voltage-gated potassium channels and their relatives. Nature, 419, 35–42.
  • Yuan, Q., Joiner, W. J., & Sehgal, A. (2006). A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol, 16, 1051–1062.
  • Zepelin, H., Siegel, JM, Tobler I. (2005). Mammalian sleep. In M. Kryger, T. Roth, & W. C. Dement (Eds.), Principles and practice of sleep medicine (pp. 91–100). Philadelphia: Elsevier Saunders.
  • Zheng, X., & Sehgal, A. (2008). Probing the relative importance of molecular oscillations in the circadian clock. Genetics, 178, 1147–1155.
  • Zimmerman, J. E., Chan, M. T., Jackson, N., Maislin, G., & Pack, A. I. (2012). Genetic background has a major impact on differences in sleep resulting from environmental influences in Drosophila. Sleep, 35, 545–557.
  • Zimmerman, J. E., Mackiewicz, M., Galante, R. J., Zhang, L., Cater, J., Zoh, C., et al. (2004). Glycogen in the brain of Drosophila melanogaster: Diurnal rhythm and the effect of rest deprivation. J Neurochem, 88, 32–40.
  • Zimmerman, J. E., Naidoo, N., Raizen, D. M., & Pack, A. I. (2008). Conservation of sleep: Insights from non-mammalian model systems. Trends Neurosci, 31, 371–376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.