536
Views
20
CrossRef citations to date
0
Altmetric
Review

Update in chronic obstructive pulmonary disease: role of antioxidant and metabolizing gene polymorphisms

, , , , , , , & show all
Pages 364-375 | Received 23 Dec 2010, Accepted 07 Apr 2011, Published online: 01 Jul 2011

REFERENCES

  • World Health Organization (WHO): 2011. Chronic Respiratory Diseases. Available at: http://www.who.int/respiratory/copd/burden/en/index.html. Accessed February 1, 2011.
  • Sethi JM, Rochester CL: Smoking and chronic obstructive pulmonary disease. Clin Chest Med. 2000;21:67–86.
  • Zaher C, Halbert R, Dubois R, : Smoking related diseases: the importance of COPD. Int J Tuberc Lung Dis. 2004;8:1423–1428.
  • Global Initiative for Chronic Obstructive Pulmonary Disease (GOLD): Global strategy for diagnosis, management, and prevention of chronic obstructive pulmonary disease. Executive Summary updated 2009. Available at: http://www.goldcopd.com/Guidelineitem.asp?l1=2&l2=1&intId=989 . Accessed February 1, 2011.
  • Chung KF, Marwick JA: Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci. 2010;1203:85–91.
  • Wanner A, Mendes ES: Airway endothelial dysfunction in asthma and chronic obstructive pulmonary disease: a challenge for future research. Am J Respir Crit Care Med. 2010;182:1344–1351.
  • Huertas A, Palange P: Circulating endothelial progenitor cells and chronic pulmonary diseases. Eur Respir J. 2011;37:426–431.
  • Barnes PJ: Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol. 2010;120:76–85.
  • Barnes PJ, Shapiro SD, Pauwels RA: Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22:672–688.
  • MacNee W: Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2:258–266.
  • O'Donnell R, Breen D, Wilson S, Djukanovic R: Inflammatory cells in the airways in COPD. Thorax. 2006;61:448–454.
  • Stockley RA: Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med. 1999;160:S49–S52.
  • Tuder RM, Yoshida T, Arap W, : State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc Am Thorac Soc. 2006;3:503–510.
  • Demedts IK, Demoor T, Bracke KR, : Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006;7:53.
  • MacNee W: Oxidants/antioxidants and COPD. Chest. 2000;117:303S–317S.
  • MacNee W: Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2:50–60.
  • Rahman I, Skwarska E, Henry M, : Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis. Free Radic Biol Med. 1999;27:60–68.
  • MacNee W, Rahman I: Is oxidative stress central to the pathogenesis of chronic obstructive pulmonary disease? Trends Mol Med. 2001;7:55–62.
  • Burrows B, Knudson RJ, Cline MG, Lebowitz MD: Quantitative relationships between cigarette smoking and ventilatory function. Am Rev Respir Dis. 1977;115:195–205.
  • Fletcher C, Peto R, Tinker C, Speizer FE: Factors related to the development of airflow obstruction. In: The Natural History of Chronic Bronchitis and Emphysema. Oxford, UK: Oxford University Press; 1976:70–105.
  • Redline S, Tishler PV, Rosner B, : Genotypic and phenotypic similarities in pulmonary function among family members of adult monozygotic and dizygotic twins. Am J Epidemiol. 1989;129:827–836.
  • Lewitter FI, Tager IB, McGue M, : Genetic and environmental determinants of level of pulmonary function. Am J Epidemiol. 1984;120:518–529.
  • Kueppers F, Miller RD, Gordon H, : Familial prevalence of chronic obstructive pulmonary disease in a matched pair study. Am J Med. 1977;63:336–342.
  • Cohen BH: Chronic obstructive pulmonary disease: a challenge in genetic epidemiology. Am J Epidemiol. 1980;112: 274–288.
  • Hallberg J, Iliadou A, Anderson M, : Genetic and environmental influence on lung function impairment in Swedish twins. Respir Res. 2010;11:92.
  • Seifart C, Plagens A: Genetics of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007;2: 541–550.
  • Black LF, Kueppers F: α1 antitrypsin deficiency in nonsmokers. Am Rev Respir Dis. 1978;17:421–428.
  • Rajendrasozhan S, Yang SR, Edirisinghe I, : Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD. Antioxid Redox Signal. 2008;10:799–811.
  • Park HS, Kim SR, Lee YC: Impact of oxidative stress on lung diseases. Respirology. 2009;14:27–38.
  • Pryor WA, Stone K: Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993;686:12–27.
  • Rahman I, MacNee W: Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med. 1996;21:669–681.
  • Reiter RJ: Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J. 1995;9:526–533.
  • Lee W, Thomas PS: Oxidative stress in COPD and its measurement through exhaled breath condensate. Clin Transl Sci. 2009;2:150–155.
  • Ceylan E, Kocyigit A, Gencer M, : Increased DNA damage in patients with chronic obstructive pulmonary disease who had once smoked or been exposed to biomass. Respir Med. 2006;100:1270–1276.
  • Kanazawa H, Yoshikawa J: Elevated oxidative stress and reciprocal reduction of vascular endothelial growth factor levels with severity of COPD. Chest. 2005;128:3191–3197.
  • Cavalcante AG, de Bruin PF: The role of oxidative stress in COPD: current concepts and perspectives. J Bras Pneumol. 2009;35:1227–1237.
  • Wang DG, Fan JB, Siao CJ, : Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280:1077–1082.
  • Strachan T, Read AP: Human Molecular Genetics. Oxford, UK: Garland Science Publishers; 2003.
  • The International HapMap Consortium: A Haplotype Map of the Human Genome. Nature. 2005;437:1299–1320.
  • HapMap. Web site. Available at: http://www.hapmap.org./ Last accessed 1 February 2011.
  • Punturieri A, Szabo E, Croxton TL, : Lung cancer and chronic obstructive pulmonary disease: needs and opportunities for integrated research. J Natl Cancer Inst. 2009;101: 554–559.
  • Barnes PJ: Chronic obstructive pulmonary disease: effects beyond the lungs. PLoS Med. 2010;7:e1000220.
  • Spira A, Beane J, Shah V, : Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A. 2004;101:10143–10148.
  • Spira A, Beane JE, Shah V, : Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med. 2007;13:361–366.
  • Pierrou S, Broberg P, O'Donnell RA, : Expression of genes involved in oxidative stress responses in airway epithelial cells of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175:577–586.
  • Silverman EK, Spira A, Paré PD: Genetics and genomics of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009;6:539–542.
  • Wang X, Chorley BN, Pittman GS, : Genetic variation and antioxidant response gene expression in the bronchial airway epithelium of smokers at risk for lung cancer. PLoS One. 2010;5:e11934.
  • Maines MD: Heme oxygenase: function, multiplicity, regulatory mechanisms and clinical application. FASEB J. 1988;2:2557–2568.
  • Tenhunen R, Marver HS, Schmid R: Microsomal heme oxygenase: characterization of the enzyme. J Biol Chem. 1969;244:6388–6394.
  • Yamada N, Yamaya M, Okinaga S, : Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet. 2000;66:187–195 [erratum Am J Hum Genet. 2001;68:1542].
  • Kimpara T, Takeda A, Watanabe K, : Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its application in association studies with Alzheimer and Parkinson disease. Hum Genet. 1997;100:145–147.
  • Ono K, Mannami T, Iwai N: Association of a promoter variant of the haem oxygenase-1 gene with hypertension in women. J Hypertens. 2003;21:1497–1503.
  • Ono K, Goto Y, Takagi S, : A promoter variant of the heme oxygenase-1 gene may reduce the incidence of ischemic heart disease in Japanese. Atherosclerosis. 2004;173:313– 317.
  • Guénégou A, Leynaert B, Bénessiano J, : Association of lung function decline with the heme oxygenase-1 gene promoter microsatellite polymorphism in a general population sample. Results from the European Community Respiratory Health Survey (ECRHS), France. J Med Genet. 2006;43:e43.
  • He JQ, Ruan J, Connett JE, : Antioxidant gene polymorphisms and susceptibility to rapid decline in lung function in smokers. Am J Respir Crit Care Med. 2002;166:323–328.
  • Forsberg L, de Faire U, Morgenstern R: Oxidative stress, human genetic variation, and disease. Arch Biochem Biophys. 2001;389:84–93.
  • Wang LI, Miller DP, Sai Y, : Manganese superoxide dismutase alanine-to-valine polymorphism at codon 16 and lung cancer. J Natl Cancer Int. 2001;93:1818–1821.
  • Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, : Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease. Biochem Biophys Res Commun. 1996;226:561–565.
  • Olsen DA, Petersen SV, Oury TD, : The intracellular processing of extracellular dismutase (EC-SOD) is a two step event. J Biol Chem. 2004;279:22152–22157.
  • Young RP, Hopkins R, Black PN, : Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax. 2006;61:394–399.
  • Arcaroli JJ, Hokanson JE, Abraham E, : Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality. Am J Respir Crit Care Med. 2009;179:105–112.
  • Mak JC, Ho SP, Yu WC, : Polymorphisms and functional activity in superoxide dismutase and catalase genes in smokers with COPD. Eur Respir J. 2007;30:684–690.
  • Dahl M, Bowler RP, Juul K, : Superoxide dismutase 3 polymorphism associated with reduced lung function in two large populations. Am J Respir Crit Care Med. 2008;178:906–912.
  • Ganguly K, Depner M, Fattman C, : Superoxide dismutase 3, extracellular (SOD3) variants and lung function. Physiol Genomics. 2009;37:260–267.
  • Castaldi PJ, Cho MH, Cohn M, : The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Hum Mol Genet. 2010;19:526–534.
  • Sørheim IC, DeMeo DL, Washko G, : International COPD Genetics Network Investigators. Polymorphisms in the superoxide dismutase-3 gene are associated with emphysema in COPD. COPD. 2010;7:262–268.
  • Quan F, Korneluk RG, Tropak MB, Gravel RA: Isolation and characterization of the human catalase gene. Nucleic Acids Res. 1986;14:5321–5335.
  • Forsberg L, Lyrenas L, de Faire U, Morgenstern R: A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med. 2001;30:500–505.
  • Nebert DW, Vasiliou V: Analysis of the glutathione S transferase (GST) gene family. Hum. Genomics. 2004;1:460–464.
  • Pemble S, Schroeder KR, Spencer SR, : Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994;300:271–276.
  • Board PG, Webb GC, Coggan M: Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13–14. Ann Hum Genet. 1989;53:205–213.
  • Johansson AS, Stenberg G, Widersten M, Mannervik B: Structure activity relationships and thermal stability of human glutathione transferase P1–1 governed by the H-site residue 105. J Mol Biol. 1998;278:687–698.
  • Eaton DL, Bammler TK: Concise review of the glutathione S-transferase and their significance to toxicology. Toxicol Sci. 1999;49:156–164.
  • Harrison DJ, Cantlay AM, Rae F, : Frequency of glutathione S transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol. 1997;16:356–360.
  • Cantlay AM, Smith CAD, Wallace WA, : Heterogeneous expression and polymorphic genotype of glutathione S-transferase in human lung. Thorax. 1994;49:1010–1014.
  • Baranova H, Perriot J, Albuisson E, : Peculiarities of the GSTM1 0/0 genotype in French heavy smokers with various types of chronic bronchitis. Hum Genet. 1997;99:822–826.
  • Ishii T, Matsuse T, Teramoto S, : Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax. 1999;54: 693–696.
  • Yim JJ, Park GY, Lee CT, : Genetic susceptibility to chronic obstructive pulmonary disease in Koreans: combined analysis of polymorphic genotypes for microsomal epoxide hydrolase and glutathione S-transferase M1 and T1. Thorax. 2000;55:121–125.
  • Lu B, He Q: Correlation between exon 5 polymorphism of glutathione S-transferase P1 gene and susceptibility to chronic obstructive pulmonary disease in northern Chinese population of Han nationality living in Beijing. Zhonghua Nei Ke Za Zhi. 2002;41:678–681.
  • Cheng SL, Yu CJ, Chen CJ, Yang PC: Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in COPD. Eur Respir J. 2004;23:818–824.
  • Xiao D, Wang C, Du MJ, Christiani DC: Relationship between polymorphisms of genes encoding microsomal epoxide hydrolase and glutathione S-transferase P1 and chronic obstructive pulmonary disease. Chin Med J. 2004;117:661–667.
  • Hersh CP, Demeo DL, Lange C, : Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol. 2005;33:71–78.
  • Židzik J, Slabá E, Joppa P, : Glutathione S-transferase and microsomal epoxide hydrolase gene polymorphisms and risk of chronic obstructive pulmonary disease in Slovak population. Croat Med J. 2008;49:182–191.
  • Lakhdar R, Denden S, Knani J, : Association between GST M1 and GSTT1 polymorphisms with COPD in Tunisian population. Biochem Genet. 2010;48:647–657.
  • Mehrotra S, Sharma A, Kumar S, Polymorphism of glutathione S-transferase M1 and T1 gene loci in COPD. Int J Immunogenet. 2010;37:263–267.
  • Faramawy MM, Mohammed TO, Hossaini AM, Genetic polymorphism of GSTT1 and GSTM1 and susceptibility to chronic obstructive pulmonary disease (COPD). J Crit Care. 2009;24:e7–e10.
  • Thakur H, Gupta L, Sobti RC, : Association of GSTM1T1 genes with COPD and prostate cancer in north Indian population. Mol Biol Rep. 2011;38:1733–1739.
  • Imboden M, Downs SH, Senn O, : Glutathione S-transferase genotypes modify lung function decline in the general population: SAPALDIA cohort study. Respir Res. 2007;11:8:2.
  • Harries LW, Stubbins MJ, Forman D, : Identification of genetic polymorphisms at the glutathione S-transferase P1 locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis. 1997;18:641–644.
  • Rodríguez F, de la Roza C, Jardi R, : Glutathione S-transferase P1 and lung function in patients with α1-antitrypsin deficiency and COPD. Chest. 2005;127: 1537–1543.
  • Lakhdar R, Denden S, Knani J, : Relationship between glutathione S-transferase P1 polymorphisms and chronic obstructive pulmonary disease in Tunisian population. Genet Mol Res. 2010;9:897–907.
  • Zimniak P, Nandur B, Pikula S, : Naturally occurring human glutathione S-transferase GSTP-1 isoforms with isoleucine and valine in position 104 differ in enzymatic properties. Eur J Biochem. 1994;224:893–899.
  • Watson MA, Stewart RK, Smith GB, : Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis. 1998;19:275–280.
  • Sundberg K, Johansson AS, Stenberg G, : Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1 towards carcinogenesis diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998;19:433– 436.
  • Hu X, O'Donnell R, Srivastava SK, : Active site architecture of polymorphic forms of human glutathione S-transferase P1 accounts for their enantioselectivity and sisparate activity in the glutathione conjugation of 7B,8alpha-dihydroxy-9alpha:10alpha-oxy-7,8,9,10-tetrahydrobenzeno(a)pyrene. Biochem Biophys Res Commun. 1997;235:424–428.
  • Yan F, Chen C, Jing J, Association between polymorphism of glutathione S-transferase P1 and chronic obstructive pulmonary disease: a meta-analysis. Respir Med. 2010;104:473–480.
  • Smolonska J, Wijmenga C, Postma DS, Boezen HM: Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am J Respir Crit Care Med. 2009;180:618–631.
  • Curtis JO, Hassett C, Hosagrahara V: Epoxide hydrolase—polymorphism and role in toxicology. Toxicol Lett. 2000;112–113:365–370.
  • Seidegard J, Ekstrom G: The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997;105:791–799.
  • Hassett C, Aicher L, Sidhu JS, : Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3:421–428.
  • Smith CA, Harrison DJ: Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet. 1997;350:630–633.
  • Yoshikawa M, Hiyama K, Ishioka S, : Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. Int J Mol Med. 2000;5:49–53.
  • Rodriguez F, Jardi R, Costa X, : Detection of polymorphisms at exons 3 (Tyr113→His) and 4 (his139→Arg) of the microsomal epoxide hydrolase gene using fluorescence PCR method combined with melting curves analysis. Anal Biochem. 2002;308:120–126.
  • Park JY, Chen L, Wadhwa N, : Polymorphisms for microsomal epoxide hydrolase and genetic susceptibility to COPD. Int J Mol Med. 2005;15:443–448.
  • Budhi A, Hiyama K, Isobe T, : Genetic susceptibility for emphysematous changes of the lung in Japanese. Int J Mol Med. 2003;11:321–329.
  • Takeyabu K, Yamaguchi E, Suzuk I, : Gene polymorphism for microsomal epoxide hydrolase and susceptibility to emphysema in a Japanese population. Eur Respir J. 2000;15:891–894.
  • Zhang R, Zhang A, He Q, : Microsomal epoxide hydrolase gene polymorphism and susceptibility to chronic obstructive pulmonary disease in Han nationality North China (in Chinese). Zhonghua Nei Ke Za Zhi. 2002;41:11–14.
  • Matheson MC, Raven J, Walters EH, : Microsomal epoxide hydrolase is not associated with COPD in a community-based sample. Hum Biol. 2006;78:705–717.
  • DeMeo DL, Hersh CP, Hoffman EA, : Genetic determinants of emphysema distribution in the national emphysema treatment trial. Am J Respir Crit Care Med. 2007;176: 42–48.
  • Chappell S, Daly L, Morgan K, : Genetic variants of microsomal epoxide hydrolase and glutamate-cysteine ligase in COPD. Eur Respir J. 2008;32:931–937.
  • Penyige A, Poliska S, Csanky E, : Analyses of association between PPAR gamma and EPHX1 polymorphisms and susceptibility to COPD in a Hungarian cohort, a case-control study. BMC Med Genet. 2010;11:152.
  • Sandford AJ, Chagani T, Weir TD, : Susceptibility genes for rapid decline of lung function in the lung health study. Am J Respir Crit Care Med. 2001;163:469–473.
  • Lakhdar R, Denden S, Knani J, : Microsomal epoxide hydrolase gene (EPHX1) polymorphisms and susceptibility to chronic obstructive pulmonary disease in Tunisian population. Genet Test Mol Biomarkers 2010;14:857–863.
  • Kim WJ, Hoffman E, Reilly J, : Association of COPD candidate genes with CT emphysema and airway phenotypes in severe COPD. Eur Respir J. 2011;37:39–43.
  • Lee J, Nordestgaard BG, Dahl M: EPHX1 polymorphisms, COPD and asthma in 47,000 individuals and in meta-analysis. Eur Respir J. 2011;37:18–25.
  • Hu G, Shi Z, Hu J, : Association between polymorphisms of microsomal epoxide hydrolase and COPD: results from meta-analyses. Respirology. 2008;13:837–850.
  • Kim WJ, Hersh CP, DeMeo DL, : Genetic association analysis of COPD candidate genes with bronchodilator responsiveness. Respir Med. 2009;103:552–557.
  • Turesky RJ, Constable A, Richoz J, : Activation of heterocyclic aromatic amines by rat and human liver microsomes and by purified rat and human cytochrome p450 1A2. Chem Res Toxicol. 1998;11:925–936.
  • Landi MT, Bertazzi PA, Shields PG, : Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans. Pharmacogenetics. 1994;4:242–246.
  • San Jose G, Moreno MU, Olivan S, : Functional effect of the p22phox−930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension. Hypertension. 2004;44:163–169.
  • Guzik TJ, West NEJ, Black E: Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation. 2000;102:1744–1747.
  • Minematsu N, Nakamura H, Iwata M, : Association of CYP2A6 deletion polymorphism with smoking habit and development of pulmonary emphysema. Thorax. 2003;58:623–628.
  • Arif E, Vibhuti A, Alam P, : Association of CYP2E1 and NAT2 gene polymorphisms with chronic obstructive pulmonary disease. Clin Chim Acta. 2007;382:37–42.
  • Cheng SL, Yu CJ, Yang PC: Genetic polymorphisms of cytochrome p450 and matrix metalloproteinase in chronic obstructive pulmonary disease. Biochem Genet. 2009;47: 591–601.
  • Vibhuti A, Arif E, Mishra A, : CYP1A1, CYP1A2 and CYBA gene polymorphisms associated with oxidative stress in COPD. Clin Chim Acta. 2010;411:474–480.
  • Kaur-Knudsen D, Nordestgaard BG, Tybjaerg-Hansen A, Bojesen SE: CYP1B1 genotype and risk of cardiovascular disease, pulmonary disease, and cancer in 50,000 individuals. Pharmacogenet Genomics. 2009;19:685–694.
  • Seo T, Pahwa P, McDuffie HH, : Association between cytochrome P450 3A5 polymorphism and the lung function in Saskatchewan grain workers. Pharmacogenet Genomics. 2008;18:487–493.
  • Lakhdar R, Denden S, Haj Mouhamed M, : Correlation of EPHX1, GSTP1, GSTM1 and GSTT1 genetic polymorphisms with anti-oxidative stress markers in COPD. Exp Lung Res. 2011;37:195–204.
  • DeMeo DL, Celedon JC, Lange C, : Genome-wide linkage of forced mid-expiratory flow in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2004;170:1294–301.
  • Hirschhorn JN: Genetic approaches to studying common diseases and complex traits. Pediatr Res. 2005;57:74R–77R.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.