145
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Crinophagy in Thyroid Follicular and Parafollicular Cells of Male Obese Zucker Rat

, BSc, MSc, EdM, DSc & , BSc
Pages 255-269 | Received 10 Nov 2014, Accepted 29 Jan 2015, Published online: 13 Apr 2015

References

  • Marzella L, Ahlberg J, Glaumann H. Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch B Cell Pathol Incl Mol Pathol 1981;36:219–34
  • Stedman TL. Stedmans’ medical dictionary for the health professions and nursing, 6th ed. Philadelphia (PA): Wolters Kluwer–Lippincott Williams and Wilkins, 2006;382
  • De Duve C. The lysosome in retrospect. In: Dingle JT, Fell HB, eds. Lysosomes in biology and pathology, Vol. 1. Amsterdam: North Holland, 1969:3–40
  • Ghadially F. Ultrastructural pathology of the cell and matrix, 4th ed., Vol. 2. Boston (MA): Butterworth-Heinemann, 1997
  • Smith RE, Farquhar MG. Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland. J Cell Biol 1966;31:319–47
  • Farquhar MG. Lysosome function in regulating secretion: Disposal of secretory granules in cells of the anterior pituitary gland. In: Dingle JT, Fell HB, eds. Lysosomes in biology and pathology, Vol. 2. Amsterdam: North Holland, 1969:462–82
  • Orci L, Junod A, Pictet R, et al. Granulolysis in a cell of endocrine pancreas in spontaneous and experimental diabetes in animals. J Cell Biol 1968;38:462–6
  • Borg LA, Schnell AH. Lysosomes and pancreatic islet function: Intracellular insulin degradation and lysosomal transformations. Diabetes Res 1986;3:277–85
  • Schnell AH, Swenne I, Borg LAH. Lysosomes and pancreatic islet function: A quantitative estimation of crinophagy in the mouse pancreatic β cell. Cell Tissue Res 1988;252:9–15
  • Nielsen HO, Hage E. The antral gastrin-producing cells in duodenal ulcer patients. Virchows Arch A Pathol Anat Histol 1985;406:271–2
  • Kamijo K, Kovacs K, Szabo S, et al. Effect of acrylonitrile on the rat pituitary: Enlargement of Golgi region in prolactin cells, crinophagy in prolactin cells and growth hormone cells. Br J Exp Path 1986;67:439–51
  • Henell F, Ericsson JL, Glaumann H. An electron microscopic study of the post-partum involution of the rat uterus. With a note on apparent crinophagy of collagen. Virchows Arch B Cell Pathol Mol Pathol 1983;42:271–87
  • Thachil E1, Hugot JP, Arbeille B, et al. Abnormal activation of autophagy-induced crinophagy in Paneth cells from patients with Crohn's disease. Gastroenterology 2012;142:1097–9
  • Mahe E, Nguyen C, Arredondo J. Crinophagy in neuroblastoma: A case report and review of the literature. Ultrastruct Pathol 2014;38:237–41
  • Weckman A, Di Ieva A, Rotondo F, et al. Autophagy in the endocrine glands. J Mol Endocrinol 2014;52:R151–63
  • Fernández-Santos JM, Morillo-Bernal J, García-Marín R, et al. Paracrine regulation of thyroid-hormone synthesis by C cells. In: Agrawal NK, ed. Thyroid hormone, Chapter 3. Intech Open Access, 2012:51–83. doi: 10.5772/46178
  • Gilloteaux J, Jamison E, Finkelstein JA. Calcitonin-cell hyperplasia in obese Zucker rats. American and Canadian Associations of Anatomists meeting, Toronto, Canada. Anat Rec 1985;211:69A
  • Flynn JJ, Margules DL, Peng TC, Cooper CW. Serum calcitonin, calcium, and thyroxine in young and old Zucker fatty rats (fa/fa). Physiol Behav 1963;31:79–84
  • Bray GA. The Zucker fatty rat: A review. Fed Proc 1977;36:148–53
  • Chomard P, Beltramo JL, Ben Cheikh R, Autissier N. Changes in thyroid hormone and thyrotrophin in the serum and thyroid glands of developing genetically obese male and female Zucker rats. J Endocrinol 1994;142:317–24
  • Plotsky PM, Thrivikraman KV, Watts AG, Hauger RL. Hypothalamic-pituitary-adrenal axis function in the Zucker obese rat. Endocrinology 1992;130:1931–41
  • Durbin-Naltchayan S, Bouhnik J, Michel R. Thyroid status in the obese syndrome of rats. Horm Metab Res 1983;15:547–9
  • Johnson PR, Stern JS, Horwitz BA, et al. Longevity in obese and lean male and female rats of the Zucker strain: Prevention of hyperphagia. Am J Clin Nutr 1997;66:890–903
  • Johnson PR, Zucker LM, Cruce JA, Hirsch J. Cellularity of adipose depots in the genetically obese Zucker rat. J Lipid Res 1971;12:706–14
  • Arola L, Palou A, Remesar X, et al. Effect of ether, sodium pentobarbital and chloral hydrate anesthesia on rat plasma metabolite concentrations. Rev Esp Fisiol 1982;37:379–86
  • Karnovsky MJ. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 1967;35:213–36
  • Ogawa Y, Masuzaki H, Isse N, et al. Molecular cloning of rat obese cDNA and augmented gene expression in genetically obese Zucker fatty (fa/fa) rats. J Clin Invest 1995;96:1647–52
  • Iida M, Murakami T, Ishida K, et al. Phenotype-linked amino acid alteration in leptin receptor cDNA from Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 1996;222:19–26
  • Iida M, Murakami T, Ishida K, et al. Substitution at codon 269 (glutamine –> proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 1996;224:597–604
  • Takaya K, Ogawa Y, Isse N, et al. Molecular cloning of rat leptin receptor isoform complementary DNAs – identification of a missense mutation in Zucker fatty (fa/fa) rats. Biochem Biophys Res Commun 1996;225:75–83
  • Kurtz TW, Morris RC, Pershadsingh HA. The Zucker fatty rat as a genetic model of obesity and hypertension. Hypertension 1989;13:896–901
  • Oltman CL, Richou LL, Davidson EP, et al. Progression of coronary and mesenteric vascular dysfunction in Zucker obese and Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 2006;291:H1780–7
  • Vázquez-Román V, Utrilla JC, Fernández-Santos JM, et al. Postnatal fate of the ultimobranchial remnants in the rat thyroid gland. J Morphol 2013;274:725–32
  • Murakami DM, Horwitz BA, Fuller CA. Circadian rhythms of temperature and activity in obese and lean Zucker rats. Am J Physiol 1995;269:R1038–43
  • Ueta K, O'Brien TP, McCoy GA, et al. Glucotoxicity targets hepatic glucokinase in Zucker diabetic fatty rats, a model of type 2 diabetes associated with obesity. Am J Physiol Endocrinol Metab 2014;306:E1225–38
  • Wu SY, Stern JS, Fisher DA, Glick Z. Cold-induced increase in brown fat thyroxine 5'-monodeiodinase is attenuated in Zucker obese rat. Am J Physiol 1987;252:E63–7
  • Whitaker EM, Robinson AC, Rayfield KM, Hervey GR. Thyroid function in male Zucker rats exposed to cold. Q J Exp Physiol 1988;73:1029–31
  • Pearse AG, Carvalheira AF. Cytochemical evidence for an ultimobranchial origin of rodent thyroid C cells. Nature 1967;214:929–30
  • Stoeckel ME, Porte A. Origine embryonnaire et différentiation sécrétoire des cellules à calcitonine (cellules C) dans la thyroide foetale du rat. Etude au microscope électronique. Z Zellforsch Mikrosk Anat 1970;106:251–68
  • Petkó M. Morphological and histochemical changes of ultimobranchial follicles of the rat thyroid in the course of postnatal life. Acta Morphol Acad Sci Hung 1975;23:123–31
  • Xu PX, Zheng W, Laclef C, et al. Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 2002;129:3033–44
  • Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 1969;17:303–13
  • Calvert R. Structure of rat ultimobranchial bodies after birth. Anat Rec 1975;181:561–79
  • Monsour PA, Kruger BJ, Barnes A. Calcitonin cell population and distribution in the thyroid gland of the rat. J Morphol 1985;186:271–8
  • Kameda Y. Localization of immunoreactive calcitonin gene-related peptide in thyroid C dells from various mammalian species. Anat Rec 1987;219:204–12
  • Conde E, Martin-Lacave I, Gonzalez-Campora R, Galera-Davidson H. Histometry of normal thyroid glands in neonatal and adult rats. Am J Anat 1991;191:384–90
  • Conde E, Martin-Lacave I, Utrilla JC, et al. Mitotic activity of the endocrine cells in rat thyroid glands during postnatal life. Endocrinology 1992;13:436–40
  • Conde E, Martín-Lacave I, Utrilla JC, et al. Postnatal variations in the number and size of C-cells in the rat thyroid gland. Cell Tissue Res 1995;280:659–63
  • Pavlov AV. The mitotic activity of the follicular and parafollicular (C) cells in the thyroid of rats with hypercalcemia. Morfologiia 1992;102:99–105 [in Russian]
  • Copp DH, Cheney B. Calcitonin – A hormone from the parathyroid which lowers the calcium level of the blood. Nature 1962;193:381–2
  • Copp DH, Cameron EC, Cheney BA, et al. Evidence for calcitonin – A new hormone from the parathyroid that lowers blood calcium. Endocrinology 1962;70:638–49
  • Garrett JE, Tamir H, Kifor O, et al. Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology 1985;136:5202–11
  • Pearse AG. The cytochemistry of the thyroid C-cells, and their relationship to calcitonin. Proc Roy Soc B 1966;164:478–87
  • Martin-Lacave I, Conde E, Moreno A, et al. Evidence of the occurrence of calcitonin cells in the ultimobranchial follicle of the rat postnatal thyroid. Acta Anat (Basel) 1992;144:93–6
  • Gabe M. Données histochimiques sur les cellules parafolliculaires de la glande thyroide du chien. Acta Anat (Basel) 1959;38:332–44
  • Azzali G. Prime osservazioni al microscopio elletronico sulle cellule parafolliculari della tiroide. Boll Soc Biol Sper 1962;88:1319–24
  • Azzali G. Ultrastructure des cellules parafolliculaires de la thyroïde chez quelques Mammifères. Ann Endocrinol 1964;25:8–13
  • Luciano L, Reale E. Elektronenmikroskpische Beobachtungen am parafollikulären Zellen der Rattenschilddrϋse. Z Zellforsch Mikrosk Anat 1964;64:751–66
  • Braunstein H, Stephens CL. Parafollicular cells of human thyroid. Arch Pathol 1968;86:659–66
  • Lietz H, Zippel H. Cytochemische Untersuchungen zur vergleichen Morphologie der C-Zellen in der Schilddrϋse. Z Zellforsch Mikrosk Anat 1969;102:85–98
  • Nève P, Wollman SH. Fine structure of ultimobranchial follicles in the thyroid gland of the rat. Anat Rec 1971;171:259–72
  • Nunez EA, Gershon MD. Cytophysiology of thyroid parafollicular cells. Int Rev Cytol 1978;52:1–80
  • Sandritter W, Kummer E, Pilaf G, Rowe L. Zűr Histochemie und Funktion der parafollikulären Zellen in der Schilddrüse. Klin Wschr 1956;84:871–2
  • Blähser S. Morphology and function of thyreocytes and calcitonin cells (C-cells) in the rat. Serum analysis following injections of thyreotropic homone, tocopherol, calcium chloride of phosphate. Endokrinologie 1973;62:327–49 [in German]
  • Gorbunova MP. ‘Mixed’ follicles in the rat thyroid gland (electron microscopic findings. Arkh Anat Gistol Embriol 1977;72:74–7 [in Russian]
  • Bykov VL. Heterogeneity of the mammalian thyroid gland and changes in the organ with age. Arkh Anat Gistol Embriol 1979;77:61–77 [in Russian]
  • Utrilla JC, Morillo-Bernal J, Gordillo-Martínez F, et al. Expression of hypothalamic regulatory peptides in thyroid C cells of different mammals. Gen Comp Endocrinol 2013;187:6–14
  • Cooper CW, Obie JF, Hughes AR, et al. Secretion of calcitonin in the genetically obese Zucker rat (fa/fa). Proc Soc Exp Biol Med 1983;173:48–55
  • Segond N, Jullienne A, Tahri EH, Garel JM. Calcitonin mRNA activity in young obese (fa/fa) Zucker rats. FEBS Lett 1984;174:86–9
  • Segond N, Tahri EH, Besnard P, et al. Calcitonin mRNA activity in genetically obese rats. Biomed Pharmacother 1986;40:207–14
  • Martin RJ, Wangsness PJ, Gahagan JH. Diurnal changes in serum metabolites and hormones in lean and obese Zucker rats. Horm Metab Res 1978;10:187–92
  • Bugnon C, Fellmann D, Blahser S, et al. Immunocytological studies of C cells with anti-calcitonin or antisomatostatin immunoserums in rats treated with vitamin D, thyroxine or benzyl-thiouracil. C R Séances Soc Biol 1978;172:691–6 [in French]
  • Capen CC, Young DM. Fine structural alterations in thyroid parafollicular cells of cows in response to hypercalcemia induced by vitamin D. Am J Pathol 1969;57:365–82
  • Matgsusawa T. Experimental morphological studies on the parafollicular cells of the rat thyroid with special reference to the source of calcitonin. Arch Histol Jap 1966;27:521–44
  • Matgsusawa T, Kurosumi K. Morphological changes in the parafollicular cells of the rat thyroid glands after administration of calcium shown by electron microscopy. Nature (Lond) 1967;214:927–8
  • Hirsch PF, Voelkel EF, Munson PL. Thyrocalcitonin: Hypocalcemic hypophosphatemic principle of the thyroid. Science 1964;146:412–13
  • Foster GV, MacIntyre I, Pearse AGE. Calcitonin production and the mitochondrion-rich cells of the dog thyroid. Nature (Lond) 1964;203:1029–30
  • Seitz PK, Cooper CW. Calcitonin, calcitonin gene-related peptide and renal calcitonin receptors in the Zucker rat. Bone Miner 1987;2:53–62
  • MacIntyre I, Alevizaki M, Bevis PJ, Zaidi M. Calcitonin and the peptides from the calcitonin gene. Clin Orthop Relat Res 1987;217:45–55
  • Sampietro R, Solcia E, Sampietro R. New methods for staining secretory granules and 5-hydroxytryptamine in the thyroid C cell, in Calcitonin, 1967. In: Taylor S, ed. Proceedings of Symposium on thyrocalcitonin and C cells. London: Heinemann; 1968:127–132
  • Zabel M. Ultrastructural localization of calcitonin, somatostatin and serotonin in parafollicular cells of rat thyroid. Histochem J 1984;16:1265–72
  • Seidel J, Zabel M, Kasprzak A, Spachacz R. The expression of calcitonin, calcitonin gene-related peptide and somatostatin in the thyroids of rats of different ages. Folia Morphol (Warsz) 2003;62:485–7
  • Barasch JM, Gershon MD, Nunez EA, et al. Thyrotropin induces the acidification of the secretory granules of parafollicular cells by increasing the chloride conductance of the granular membrane. J Cell Biol 1988;107:2137–47
  • Arias J, Scopsi L, Fisher JA, Larsson LI. Light- and electron-microscopical localization of calcitonin, calcitonin gene-related peptide, somatostatin and C-terminal gastrin/cholecystokinin immunoreactivities in rat thyroid. Histochemistry 1989;91:265–72
  • Zabel M, Dietel M, Gebarowska E, Michael R. Effect of follicular cells on calcitonin gene expression in thyroid parafollicular cells in cell culture. Histochem J 1999;31:175–80
  • Gkonos PJ, Tavianini MA, Liu CC, Roos BA. Thyrotropin-releasing hormone gene expression in normal thyroid parafollicular cells. Mol Endocrinol 1989;3:2101–9
  • De Miguel M, Fernández-Santos JM, Utrilla JC, et al. Thyrotropin-releasing hormone receptor expression in thyroid follicular cells: A new paracrine role of C-cells? Histol Histopathol 2005;20:713–18
  • Raghay K, García-Caballero T, Nogueiras R, et al. Ghrelin localization in rat and human thyroid and parathyroid glands and tumours. Histochem Cell Biol 2006;125:239–46
  • Morillo-Bernal J, Fernández-Santos JM, Utrilla JC, et al. Functional expression of the thyrotropin receptor in C cells: New insights into their involvement in the hypothalamic-pituitary-thyroid axis. J Anat 2009;215:150–8
  • Iversen E, Weeke J, Laurberg P. TRH immunoreactivity in the thyroid gland. Scand J Clin Lab Invest 1984;44:703–9
  • Iversen E, Laurberg P. Thyrotrophin-releasing hormone (TRH) and hormone secretion from the follicular and C-cells of perfused dog thyroid lobes. Acta Endocrinol (Copenhagen) 1985;109:499–504
  • Dadan J, Zbucki RŁ, Sawicki B, et al. Preliminary immunohistochemical investigations of thyroid C cells in an experimental model of hyperthyroidism. Folia Morphol (Warsz) 2003;62:319–21
  • Fletcher JM, Haggarty P, Wahle KW, Reeds PJ. Hormonal studies of young lean and obese Zucker rats. Horm Metab Res 1986;18:290–5
  • Martin A, David V, Malaval L, et al. Opposite effects of leptin on bone metabolism: A dose-dependent balance related to energy intake and insulin-like growth factor-I pathway. Endocrinology 2007;148:3419–25
  • Houseknecht KL, Spurlock ME. Leptin regulation of lipid homeostasis: Dietary and metabolic implications. Nutr Res Rev 2003;16:83–96
  • Gilloteaux J, Kashouty R, Yono N. The perinuclear space of pancreatic acinar cells and the synthetic pathway of zymogen in Scorpaena scrofa L.: Ultrastructural aspects. Tissue Cell 2008;40:7–20
  • Martin TJ, Best JD, Melick RA. Degradation of calcitonin by homologous thyroid acid proteinase. Endocrinol 1970;86:447–9
  • Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 2010;584:1393–8
  • Cheema MU, Damkier HH, Nielsen J, et al. Distal renal tubules are deficient in aggresome formation and autophagy upon aldosterone administration. PLoS One 2014;9:e101258
  • Wu SY, Stern JS, Fisher DA, Glick Z. Cold-induced increase in brown fat thyroxine 5'-monodeiodinase is attenuated in Zucker obese rat. Am J Physiol 1987;252:E63–7
  • Ahrén B. Thyroid neuroendocrinology: Neural regulation of thyroid hormone secretion. Endocr Rev 1986;7:149–55
  • Kirk J, Hepfinger C. Calcitonin. Clin Rev Bone Mineral Metab 2005;3:39–49
  • Kleeman CR, Massry SG, Coburn JW. The clinical physiology of calcium homeostasis. Parathyroid hormone, and calcitonin. California Med 1971;114:19–30
  • Hirsch PF, Lester GE, Talmage RV. Calcitonin, an enigmatic hormone: does it have a function? J Musculoskelet Neuron Interact 2001;1:299–305
  • Fraser BA, Duckworth JW. Ultimobranchial body cysts in the human foetal thyroid: Pathological implications. J Pathol 1979;127:89–92
  • Albores-Saavedra JA. Physiologic versus neoplastic C-cell hyperplasia of the thyroid: Separation of distinct histologic and biologic entities. Cancer 1996;77:750–6
  • Ljungberg O, Dymling JF. Pathogenesis of C-cell neoplasia in thyroid gland. C-cell proliferation in a case of chronic hypercalcaemia. Acta Pathol Microbiol Scand A 1972;80:577–88
  • Gould VE, Benditt EP. Ultrastructural and functional relationships of some human endocrine tumors. Pathol Ann 1973;8:205–30
  • Leboulleux S, Baudin E, Travagli JP, Schlumberger M. Medullary thyroid carcinoma. Clin Endocrinol (Oxf) 2004;61:299–310
  • Cakir M, Grossman AB. Medullary thyroid cancer: molecular biology and novel molecular therapies. Neuroendocrinology 2009;90:323–48
  • Martin V, Martin L, Viennet G, et al. Solid cell nests and thyroid pathologies. Retrospective study of 1,390 thyroids. Ann Pathol 2000;20:196–201 [in French]
  • Kanamoto N, Akamizu T, Hosoda H, et al. Substantial production of ghrelin by a human medullary thyroid carcinoma cell line. J Clin Endocrinol Metab 2001;86:4984–90
  • Verga U, Ferrero S, Vicentini L, et al. Histopathological and molecular studies in patients with goiter and hypercalcitoninemia: reactive or neoplastic C-cell hyperplasia? Endocrine-Related Cancer 2007;14:393–403
  • Kedzia C, Lacroix L, Ameur N, et al. Medullary thyroid carcinoma arises in the absence of prolactin signaling. Cancer Res 2005;65:8497–503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.