80
Views
94
CrossRef citations to date
0
Altmetric
Original Article

Macrophages: Current Views on Their Differentiation, Structure, and Function

&
Pages 343-372 | Accepted 11 Jan 1989, Published online: 10 Jul 2009

References

  • Metchinkoff E. Lectures on the Comparative Pathology of Inflammation, F A Starling, E H Starling. Dover Publications, Inc., New York 1968; 1–224
  • Aschoff L. Das reticulo-endotheliale system. Ergebn Inn Med Kinderhulk 1924; 26: 1–118
  • van Furth R, Cohn Z A, Hirsch J G, Humphry J H, Spector W G, Langevoort H L. The mononuclear phagocyte system: A new classification of macrophages, monocytes, and their precursors. Bull WHO 1972; 46: 845–852
  • van Furth R. Phagocytic cells: Development and distribution of mononuclear phagocytes in normal steady state and inflammation. Inflammation. Basic Principles and Clinical Correlates, J I Gallin, I M Goldstein, R Snyderman. Raven Press, New York 1988; 281–295
  • Fedorko M E, Hirsch J G. Structure of monocytes and macrophages. Semin Hematol 1970; 7: 109–124
  • Güttner J, Augusten K, Bimberg R, Lange P. Modification of the surface structure of murine peritoneal macrophages following chemotherapy. Exp Pathol 1975; 11: 209–214
  • Polliack A, Gordon S. Scanning electron microscopy of murine macrophages. Surface characteristics during maturation, activation, and pinocytosis. Lab Invest 1975; 33: 469–477
  • Orenstein J M, Shelton E. Surface topography and interactions between mouse peritoneal cells allowed to settle on an artificial substrate: Observations by scanning electron microscopy. Exp Mol Pathol 1976; 24: 201–219
  • Robertson T A, Papadimitriou J M, Walters M N-I, Wolman M. Effects of exposure of murine peritoneal exudate and resident macrophages to high molecular Levan: A morphological study. J Pathol 1977; 123: 157–164
  • Allison A C. The role of microfilaments and microtubules in cell movement, endocytosis, and exocytosis. Locomotion of Tissue Cells, Ciba Foundation Symposium 18, Elsevier, Excerpta Medica, North Holland, Amsterdam 1983; 109–148
  • Brederoo P, Daems W T. Cell coat, worm-like structures, and labyrinths in guinea pig resident and exudate peritoneal macrophages as demonstrated by an abbreviated fixation procedure for electron microscopy. Z Zellforsch Mikrosk Anat 1972; 126: 135–156
  • Daems W T, Brederoo P. Electron microscopical studies on the structure, phagocytic properties, and peroxidative activity of resident and exudate peritoneal macrophages in the guinea pig. Z Zellforsch Mikrosk Anat 1973; 144: 247–297
  • van der Rhee H J, de Winter C PM, Daems W T. Fine structure and peroxidative activity of rat blood monocytes. Cell Tissue Res 1977; 185: 1–16
  • van De Rhee H J, van der Burgh-de Winter C PM, Daems W T. The differentiation of monocytes into macrophages, epithelioid cells, and multinucleated giant cells in subcutaneous granulomas. I. Fine structure. Cell Tiss Res 1979; 197: 355–378
  • van der Rhee H J, van der Burgh-de Winter C PM, Daems E T. The differentiation of monocytes into macrophages, epithelioid cells, and multinucleated giant cells in subcutaneous granulomas. II. Peroxidative activity. Cell Tissue Res 1967; 197: 379–396
  • Carr I. The fine structure of the cells of the mouse peritoneum. Z Zellforsch Mikrosk Anat 1967; 80: 534–555
  • Daems W T, Roos D, van Berkel T JC, van der Rhee H J. The subcellular distribution and biochemical properties of peroxidase in monocytes and macrophages. Lysosomes in Applied Biology and Therapeutics, J T Dingle, I H Shaw, P Jacques. Plenum Press, New York 1979; vol. 6: 463–514
  • Carr I, Daems W T. The Reticuloendothelial System. A Comprehensive Treatise, vol. 1, Morphology. Plenum Press, New York, London 1980; 1–793
  • Stossel P. The mechanical responses of white blood cells. Inflammation. Basic Principles and Clinical Correlates, J I Gallin, I M Goldstein, R Snyderman. Raven Press, New York 1988; 325–342
  • Hartwig J H, Shelvin P A. The architecture of actin filaments and the ultrastructural location of actin binding protein in the periphery of lung macrophages. J Cell Biol 1986; 103: 1007–1020
  • Stossel T P. Actin filaments and secretion. The macrophage model. Meth Cell Biol 1981; 23: 215–230
  • Schmalzl F, Braunsteiner H. The cytochemistry of monocytes and macrophages. Ser Haemat 1970; 3: 93–131
  • Yam L T, Li C Y, Crosby W H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol 1971; 55: 283–190
  • Horwitz D A, Allison A C, Ward P, Kight N. Identification of human mononuclear leukocyte population by esterase staining. Clin Exp Immunol 1977; 30: 289–298
  • Ginsel L A, Onderwater J JM, De Water R, Block J, Daems W T. 5′ nucleotidase activity in mouse peritoneal macrophages. Histochemistry 1983; 79: 295–309
  • Nichols B A, Bainton D F, Farquahar M G. Differentiation of monocytes: Origin, nature, and fate of their azurophil granules. J Cell Biol 1971; 50: 498–515
  • Higuchi S, Sugo M, Dannenberg A M, Schofield B H. Histochemical demonstration of enzyme activities in plastic and paraffin embedded tissue sections. Stain Technol 1979; 54: 5–12
  • De Water R, van't Noordende J M, Ginsel L A, Daems W T. Heterogeneity in wheat germ agglutinin binding by mouse peritoneal macrophages. Histochemistry 1981; 72: 333–339
  • Pinkus G S, Said J W. Profile of intracytoplasmic lysozyme in normal tissues, myeloproliferative disorders, hairy cell leukemia and other pathologic processes: An immunoperoxidase study of paraffin sections and smears. Am J Pathol 1977; 89: 351–366
  • Austyn J M, Gordon S. F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 1981; 11: 805–815
  • Gordon S, Hirsch S, Starkey P. Differentiation antigens of mouse macrophages and polymorphonuclear leukocytes. Mononuclear Phagocytes. Characteristics, Physiology, and Function, R van Furth. Martinus Nijhoff Publishers, Dordrecht, Boston, Lancaster 1985; 308
  • Hirsch S, Gordon S. Polymorphic expression of a neutrophil differentiation antigen revealed by monoclonal antibody 7/4. Immunogenetics 1983; 18: 229–239
  • Hogg N, Horton M A. Myeloid antigens: New and previously defined clusters. Leucocyte Typing III, A J McMichael. Oxford University Press, Oxford 1987; 576–602
  • McMichael A J. Leucocyte typing III. Oxford University Press, Oxford 1987
  • Todd R F, III, Liu D Y. Mononuclear phagocyte activation: Activation-associated antigens. Fed Proc 1986; 45: 2829–2836
  • Quesenbery P, Levitt L. Hematopoietic stem cells. I. N Engl J Med 1979; 301: 755–760
  • Quesenbery P, Levitt L. Hematopoietic stem cells. II. N Engl J Med 1979; 301: 819–823
  • Quesenbery P, Levitt L. Hematopoietic stem cells. III. N Engl J Med 1979; 301: 868–872
  • Goud T JL, Schotte C, van Furth R. Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro. J Exp Med 1975; 142: 1180–1199
  • van Furth R, Sluiter W. Distribution of blood monocytes between a marginating and a circulating pool. J Exp Med 1986; 163: 474–479
  • Meuret G, Hoffman G. Monocyte kinetic studies in normal and diseased states. Br J Haematol 1973; 24: 275–285
  • van Furth R, Diesselhoff-den Duk M MC, Mattie H. Quantitative study on the production and kinetics of mononuclear phagocytes during an acute inflammatory reaction. J Exp Med 1973; 138: 1314–1330
  • Whitelaw D M. Observation on human monocyte kinetics after pulse labelling. Cell Tissue Kinet 1972; 5: 311–317
  • Hume D A, Gordon S. The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Mononuclear Phagocytes. Characteristics, Physiology, and Function, R van Furth. Martinus Nighoff, Boston 1986; 9–17
  • Surleff S V, Papadimitriou J M. The mononuclear phagocytes of the rat adrenal. Am J Pathol 1981; 104: 258–271
  • Gordon S. Biology of the macrophage. J Cell Sci 1986; 4(Suppl.)267–286
  • van der Meer J WM, Beelen R HJ, Fluitsma D M, van Furth R. Ultrastructure of mononuclear phagocytes developing in liquid bone marrow cultures: A study on peroxidative activity. J Exp Med 1979; 149: 17–26
  • Adams D O, Hamilton T A. The cell biology of macrophage activation. Ann Rev Immunol 1984; 2: 283–318
  • Blussé van Oud Alblas A, van der Linden-Schrever B, van Furth R. Origin and kinetics of pulmonary macrophages during an inflammatory reaction induced by intra-alveolar administration of aerosolized heat killed BCG. Am Rev Respir Dis 1983; 128: 276–281
  • Sluiter W, Elzenga-Claasen I, Husing-Hesselink E, van Furth R. Presence of the factor increasing monocytopoiesis (FIM) in rabbit peripheral blood during an acute inflammation. J Reticuloendothel Soc 1982; 34: 235–252
  • Trinchieri G, Perussia B. Immune interferon: A pleitropic lymphokine with multiple effects. Immun Today 1983; 6: 131–136
  • Sherr C J, Rettenmier C W, Sacca R, Roussel M F, Look A T, Stanley E R. The c-fms protooncogene is related to the receptor for the mononuclear phagocyte growth factor CSF-1. Cell 1985; 41: 665–676
  • Sacca R, Stanley E R, Sherr C J, Rettenmier C W. Specific binding of the mononuclear phagocyte colony-stimulating factor CSF-1 to the product of the v-fms oncogene. Proc Natl Acad Sci, USA 1986; 83: 3331–3340
  • Guilbert L J, Stanley E R. The interaction of 1251-colony stimulating factor –I with bone marrow derived macrophages. J Biol Chem 1986; 261: 4024–4032
  • Steinman R M, Mellman J S, Muller W A, Cohn Z A. Endocytosis and the recycling of plasma membrane. J Cell Biol 1983; 96: 1–27
  • Cohn Z A. The activation of mononuclear phagocytes: Fact, fancy, and future. J Immunol 1978; 121: 813–816
  • Unanue E R. Secretory functions of mononuclear phagocytes. Am J Pathol 1986; 83: 396–417
  • Gordon S J. Regulation of enzyme secretion by mononuclear phagocytes. Studies with macrophage plasminogen activator and lysozyme. Fed Proc 1978; 37: 2754–2758
  • Johnson W J, Pizzo S J, Imber M J, Adams D O. Receptors for myelated proteins regulate the secretion of neural proteases by murine macrophages. Science 1982; 218: 574–576
  • Adams D O, Hamilton T A. Phagocytic cells. Cytotoxic activities of macrophages. Inflammation. Basic Principles and Clinical Correlates, J I Gallin, I M Goldstein, R Snyderman. Raven Press, New York 1988; 471–492
  • Bonney R J, Davies P. Possible autoregulatory functions of the secretory products of mononuclear phagocytes. Contemp Top Immunobiol 1984; 14: 199–223
  • Henson P M, Henson J E, Fittschen C, Kimani G, Bratton D L, Riches D WG. Phagocytic cells. Degranulation and secretion. Inflammation. Basic principles and Clinical Correlates, J I Gallin, I M Goldstein, R Snyderman. Raven Press, New York 1988; 363–390
  • Snyderman R, Pike M C, Edge S, Lane B. A chemotactic receptor on macrophages exists in two affinity states regulated by guanine nucleotides. J Cell Biol 1984; 98: 444–448
  • Nishizuhu Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984; 308: 693–698
  • McPhail L C, Wolfson M, Snyderman R. Protein kinase (PKC) and neutrophil activation. PKC becomes tightly membrane associated when cells are stimulated with phorbol myristate acetate (PMA). Fed Proc 1984; 43: 974–986
  • Klebanoff S J. Phagocytic cells. Products of oxygen metabolism. Inflammation. Basic principles and Clinical Correlates, J I Gallin, I M Goldstein, R Snyderman. Raven Press, New York 1988; 391–444
  • Myers M A, McPhail L C, Snyderman R. Protein kinase C activity in human lymphocytes and monocytes: Phorbol myristate acetate stimulation shifts activity from cytosol to membrane components. Clin Res 1984; 32: 353A
  • Axline S. Functional biochemistry of the macrophages. Semin Hematol 1970; 7: 142–160
  • Simmon L M, Robin E D, Phillips J R, Acevedo J, Axline S G, Theodore J. Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2. J Clin Invest 1977; 59: 443–448
  • Bar-Eli M, Territo M C, Cline M S. The progency of a single progenitor cell can develop characteristics of either a tissue or an alveolar macrophage. Blood 1980; 57: 95–98
  • Loike J P, Kozler V F, Silverstein S C. Increased ATP and creatine phosphate turnover in phagocytizing mouse peritoneal macrophages. J Biol Chem 1979; 254: 9558–9564
  • Papadimitriou J M, Walters M N-I. Macrophage polykarya. Crit Rev Toxicol 1979; 6: 211–255
  • Murch A R, Grounds M D, Marshall C A, Papadimitriou J M. Direct evidence that inflammatory multinucleate giant cells form by fusion. J Pathol 1982; 137: 177–180
  • Papadimitriou J M, Sforcina D, Papaelias L. Kinetics of multinucleate giant cell formationa nd their modification by various agents in foreign body reactions. Am J Pathol 1973; 73: 349–361
  • Postlethwaite A E, Jackson B K, Beachey E H, Kang A H. Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen- and mitogen-stimulated lymphocytes. J Exp Med 1982; 155: 168–178
  • Weinberg J B, Hobbs M M, Misukonis M A. Recombinant gamma interferon induces human monocyte polykaryon formation. Proc Natl Acad Sci USA 1984; 81: 4554–4557
  • Warfel A H. Macrophage fusion and multinculeated giant cell formation and surface morphology. Exp Mol Pathol 1978; 28: 163–176
  • Papadimitriou J M, Sforcina D. The effects of drugs on monocytic fusion in vivo. Exp Cell Res 1975; 91: 233–236
  • Papadimitriou J M, Robertson T A, Walters M N-I. An analysis of the phagocytic potential of multinucleate foreign body giant cells. Am J Pathol 1975; 78: 343–358
  • Papadimitriou J M, Wee S H. Selective release of lysosomal enzymes from cell populations containing multinucleate giant cells. J Pathol 1976; 120: 193–199
  • Papadimitriou J M, Robertson T A. Exocytosis by macrophage polykarya: An ultrastructural study. J Pathol 1980; 130: 75–81
  • Papadimitriou J M, van Bruggen I. Evidence that multinucleate giant cells are examples of mononuclear phagocytic differentiation. J Pathol 1986; 148: 149–157
  • Papadimitriou J M, Cornelisse C J. A cytophotometric and autoradiographic study of DNA synthesis in macrophages and multinucleate foreign body giant cells. J Reticuloendothel Soc 1975; 18: 26–270
  • Kreipe H, Radzun H J, Rudolph P, Barth J, Hansmann M-L, Heidorn K, Parwaresch M R. Multinucleated giant cells generated in vitro. Terminally differentiated macrophages with down regulated c-fms expression. Am J Pathol 1988; 130: 232–243
  • Rettenmier C W, Sacca R, Furman W L, Roussel M F, Holt J T, Nienhuis A W, Stanley E R, Sherr C J. Expression of the human c-fms proto-oncogene product (colony-stimulating-factor-I receptor) on peripheral blood mononuclear cells and choriocarcinoma cell lines. J Clin Invest 1986; 77: 1740–1746
  • Mariano M, Spector W G. The formation and properties of macrophage polykaryons (inflammatory giant cells). J Pathol 1974; 113: 1–19
  • Papadimitriou J M, Murch A R, van Bruggen I. A cytogenetic and cytophotometric analysis of resident and exudate macrophages. J Pathol 1980; 131: 175–182
  • Murch A R, Papadimitriou J M. A cytogenetic study of subcutaneous murine macrophages and multinucleate giant cells. Aust J Exp Biol Med Sci 1985; 63: 353–360
  • Murch A R, Papadimitriou J M, (unpublished information)
  • Nathan C F. Mechanisms of macrophage antimicrobial activity. Trans Soc Trop Med Hyg 1983; 77: 620–630
  • Nathan C F, Murray H W, Wiebe M E, Rubin B Y. Identification of interferon gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobiol activity. J Exp Med 1983; 158: 670–689
  • Nathan C F, Prendergast T J, Wieke M E, Stanley E R, Platzer E, Remold H G, Welter K, Rubin B Y, Murray H W. Activation of human macrophages: Comparison of other cytokines with interferon-gamma. J Exp Med 1984; 160: 600–605
  • Malkovsky M, Loveland B, North M, Askerson G L, Gao L, Ward P, Fiers W. Recombinant interleukin-2 directly augments the cytotoxicity of human monocytes. Nature 1987; 325: 262–265
  • Gemsa D, Debatin K-M, Kubelka C, Kramer W, Deimann Kees W. U, Krammer P H. Macrophage activating factors from different T-cell clones induce distinct macrophage functions. J Immunol 1983; 131: 833–844
  • Krammer P H, Echtenachter B, Hamann U, Kaltmann B, Kees U, Kubelka C, Gemsa D. The role of T-cell clone and hybridoma derived lymphokines in macrophage activation. Mononuclear phagocytes. Characteristics Physiology, and Function, R van Furth. Maritnus Nijhoff Publishers, Dordrecht, Boston, Lancaster 1985; 533–539
  • Walters M N-I, Papadimitriou J M. Phagocytosis: A review. CRC Crit Rev Cytol 1978; 5: 377–421
  • Edelson P J. Intracellular parasites and phagocytic cells: Cell biology and pathophysiology. Rev Infect Dis 1982; 4: 124–135
  • Nathan C F. MEchanisms of macrophage antimicrobial activity. Trans R Soc Trop Med Hyg 1986; 77: 620–630
  • Sung S S, Nelson R S, Silverstein S C. Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. J Cell Biol 1983; 96: 160–166
  • Vogel S N, Finbloom D S, English K E, Rosenstreich D L, Langreth S G. Interferon-induced enhancement of macrophage Fc receptor expression: Beta-interferon treatment of C3H/HeJ macrophages results in increased numbers and density of Fc receptor. J Immunol 1983; 130: 1210–1224
  • Rhodes J, Jones D H, Bleechen N M. Increased expression of human monocyte HLA-DR antigens and Fc gamma receptors in response to human interferon in vivo. Clin Exp Immunol 1983; 53: 789–743
  • Ezekowitz R A, Gordon S. Alterations in surface properties by macrophage activation. Expression of receptors for Fc and mannose terminal glycoproteins and differentiation antigens. Contemp Top Immunol 1984; 14: 33–56
  • Nitta T, Suzuki T. Biochemical signals transmitted by Fc gamma receptor. Triggering mechanisms of the increased synthesis of adenosine-3′5′-cyclic monophosphate mediated by Fc gamma 2a and Fc gamma 2b receptors of a murine macrophage-like cell line (P388 D1)?. J Immunol 1982; 129: 2708–2714
  • Bohnsack J F, Kleinman H K, Takahashi T, O'Shea J J, Brown E J. Connective tissue proteins and phagocytic cell function: Laminin enhances complement and Fc-mediated phagocytosis by cultured human phagocytes. J Exp Med 1985; 1612: 912–923
  • Pommier C G, Inada S, Fries L F, Takahashi T, Frank M M, Brown E J. Plasma fibronectin enhances phagocytosis of opsonised particles by human peripheral blood monocytes. J Exp Med 1983; 157: 1844–1854
  • Wright S D, Craigmyl L S, Silverstein S C. Fibronectin and serum amyloid P component stimulate C3b and C3 bi-mediated phagocytosis in cultured human monocytes. J Exp Med 1983; 158: 1338–1343
  • Griffin F M, Griffin J A. Augmentation of macrophage complement receptor function in vitro. II. Characterization of the effects of a unique lymphokine upon the phagocytic capabilities of macrophages. J Immunol 1980; 125: 844–849
  • Griffin F M, Mullinax P J. Augmentation of macrophage complement receptor function in vitro. IV. The lymphokines that activate macrophage C3 receptors for phagocytosis binds to a fucose-bearing glycoprotein on the macrophage plasma membrane. J Exp Med 1984; 160: 126–128
  • Wright S D, Detmers P A, Jong M TC, Meyer B C. Interferon gamma depresses binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin. J Exp Med 1986; 163: 1245–1259
  • Unkeless J C, Wright S D. Phagocytic cells: Fc gamma and complement receptors. Inflammation: Basic Principles and Clinical Correlates, J I Gallin, I M Goldstein, R Snyderman. Raven Press, New York 1988; 343–362
  • Johnston R B, Lehmeyer J E, Guthrie L A. Generation of superoxide anion and chemiluminescence by human monocytes during phagocytosis and on contact with surface-bound immunoglobulin G. J Exp Med 1976; 143: 1551–1556
  • Rouzer C A, Scott W A, Kempe J, Cohn Z A. Prostaglandin synthesis by macrophages requires a specific receptor-ligand interaction. Proc Natl Acad Sci USA 1980; 77: 4279–4282
  • Aderem A A, Wright S D, Silverstein S C, Cohn Z A. Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. J Exp Med 1985; 161: 617–622
  • Wright S D, Silverstein S C. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human monocytes. J Exp Med 1983; 158: 2016–2023
  • Yamamoto K, Johnston R B. Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 1984; 159: 405–416
  • Goodman M G, Chenoweth D E, Weigle W O. Induction of interleukin 1 secretion and enhancement of humoral immunity by binding of human C5a to macrophage surface C5a receptors. J Exp Med 1982; 156: 912–917
  • Snyderman R, Phillips J K, Mergenhagen S E. Biological activity of complement in vivo? Role of C5 in accumulation of polymorphonuclear leucocytes in inflammatory exudates. J Exp Med 1971; 134: 1131–1143
  • Roos D, Balm H JM. The oxidative metabolism of monocytes. The Reticuloendothelial System. A Comprehensive Treatise. 2. Biochemistry and metabolism, A J Sbarra, R R Strauss. Plenum Press, New York 1980; 189–222
  • Czuprynski C J, Campbell P A, Henson P M. Killing of Listeria monocytogenes by human neutrophils and monocytes but not by monocyte-derived macrophages. J Reticuloendothel Soc 1983; 34: 29–44
  • Diamond R D, Bennett J E. Growth of cryptococcus neoformans within human macrophages in vitro. Infect Immun 1873; 7: 231–236
  • Murray H W, Cartelli D M. Killing of intracellular Leishmania donovani by human mononuclear phagocytes: Evidence for oxygendependent and independent leishmanicidal activity. J Clin Invest 1983; 72: 32–44
  • Musson R A, McPhail L C, Shafron H, Johnston R B. Differences in the ability of human peripheral blood monocytes an in vitro monocyte-derived macrophages to produce superoxide anion: Studies with cell from normals and patients with chronic granulomatous disease. J Reticuloendothel Soc 1982; 31: 261–266
  • Nakagawara A, Nathan C F, Cohn Z A. Hydrogen peroxide metabolism in human monocytes during differentiation in vitro. J Clin Invest 1981; 68: 1243–1252
  • Pabst M J, Hedegaard H B, Johnston R B. Cultured human monocytes require exposure to bacterial products to maintain an optimel oxygen radical response. J Immunol 1982; 128: 123–128
  • van Furth R, Hirsch J G, Federko M E. Morphology and peroxidase cytochemistry of mouse promocytes, monocytes, and macrophages. J Exp Med 1970; 132: 794–812
  • Johnson W D, Mei B, Cohn Z A. The separation, long-term cultivation, and maturation of the human monocyte. J Exp Med 1977; 146: 1613–1626
  • Daems W T, Poelmann R E, Brederoo P. Peroxidative activity in resident peritoneal macrophages and exudate monocytes of the guinea pig after ingestion of latex particles. J Histochem Cytochem 1973; 21: 93–95
  • Elsbach P, Weiss J. Phagocytic cells. Oxygen independent antimicrobial systems. Inflammation. Basic Principles and Clinical Correlates, J I Gallin, I M Goldstein, R Snyderman. Raven Press, New York 1988; 445–470
  • Selsted M E, Brown D M, DeLange R J, Lehrer R I. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 1983; 258: 1485–1489
  • Cohn Z A. The macrophage-versatile element of inflammation. Harvey Lect 1982; 77: 63–80
  • Evans R, Eidlen L G. The role of the inflammatory response during tumor growth. Macrophages and Natural Killer Cells. Regulation and Function, N S Sorkin. Plenum Publishing Co., New York 1982; 379–387
  • Russell S W, Gillespie G Y, Pace J L. Evidence for mononuclear phagocytes in solid neoplasms and appraisal of their non-specific cytotoxic capabilities. Contemporary Topics in Immunobiology, vol. 10, I P Witz, M G Hanna, Jr. Plenum Press, New York 1980; 143–176
  • Bottazzi B, Polentarutti Acero N. R, Balsari A, Borachi D, Ghezzi P, Salmona M, Mantovani A. Regulation of the macrophage content of neoplasms by chemoattractants. Science 1983; 220: 208–210
  • Jones P A, Werb Z. Degradation of connective tissue matrices by macrophages. J Exp Med 1980; 152: 1527–1536
  • Lipton J H, Sach S L. Characterization of macrophage and granulocyte inducing proteins for normal and leukemic myeloid cells produced by the krebs ascites tumor. Biochem Biophys Acta 1981; 673: 552–569
  • Stewart C C, Lin H-S. Macrophage growth factor and its relationship to colony stimulating factor. J Reticuloendoth Sco 1978; 23: 269–285
  • Rhodes J, Plowman P, Bishop M, Lipscomb D. Human macrophage function in cancer. Systemic and local changes detected by an assay for Fc receptor expression. J Natl Cancer Inst 1981; 66: 423–429
  • Fauve R M, Hevin B, Jacob H, Gaillard J A, Jacob F. Antiinflammatory effects of murine malignant cells. Proc Natl Acad Sci USA 1974; 71: 4052–4056
  • Pike M C, Snyderman R. Depression of macrophage function by a factor produced by neopiasms: A mechanism of abrogation of immune surveillance. J Immunol 1976; 117: 1243–1249
  • Normann S J. Macrophage infiltration and tumor progression. Cancer Metastasis Rev 1985; 5: 277–291
  • McBride W H. Phenotype and functions of intratumoral macrophages. Biochim Biophys Acta 1986; 865: 27–41
  • Somers S D, Mastin J P, Adams D O. The binding of tumor cells by murine mononuclear phagocytes can be divided into two, qualitatively distinct types. J Immunol 1983; 131: 2086–2093
  • Mantovani A, Ming W J, Balotta C, Abdegalil B, Bottazzi B. Origin and regulation of tumor associated microphages: The role of tumor derived chemotactic factor. Biochim Biophys Acta 1986; 865: 59–67
  • Ferluga J, Schorlemmer H U, Baptista L C, Allison A C. Production of the complement cleavage product, C3a, by activated macrophages and its tumorolytic effects. Clin Exp Immunol 1978; 31: 512–517
  • Adams D O, Cohen M S, Koren H S. Activation of mononuclear phagocytes for cytolysis: Parallels and contrasts between activation for tumor cytotoxicity and for ADCC. Macrophage Mediated Antibody Dependent Cellular Cytotoxicity, H S Koren. Marcell Dekker, New York 1983; 43–52
  • Currie G A. Activated macrophages kill tumour cells by releasing arginase. Nature 1978; 273: 758–760
  • Nathan C F, Brukner L H, Silvrstein S C, Cohn Z A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and release of hydrogen peroxide. J Exp Med 1979; 149: 84–92
  • Matthews N. Anti-tumour cytotoxin from macrophages: No correlation between cytotoxin adsorption by tumour cell lines and their cytotoxin susceptibility. J Immunol 1984; 53: 537–543
  • Drysdale B E, Zacharchuk C M, Shin H S. Mechanism of macrophage-mediated cytotoxicity: Production of a soluble cytotoxic factor. J Immunol 1983; 131: 2362–2367
  • Talmadge J E, Key M, Fidler I J. Macrophage content of metastatic and non-metastatic rodent neoplasms. J Immunol 1981; 126: 2245–2248
  • Currie G A. Promotion of fibrosarcoma cell growth by products of syngeneic host macrophages. Br J Cancer 1981; 44: 5506–5513
  • Gabizon A, Lelbovich S J, Goldman R. Contrasting effects of activated and non-activated macrophages and macrophages from tumor-bearing mice on tumor growth in vivo. J Natl Cancer Inst 1980; 65: 913–920
  • Keller R. Macrophages in primary and secondary tumor growth: Some implications for cancer therapy. Biomedicine and Pharmacotherapy 1985; 39: 7–12
  • Polverini P J, Cotran R S, Gimbron M A, Unanue E R. Activated macrophages induce vascular proliferation. Nature 1977; 269: 804–806
  • Taniyama T, Holden H T. Cytolytic activity of macrophages isolated from primary murine sarcoma virus (MSV)-induced tumors. Int J Cancer 1979; 24: 151–160
  • Herberman R B, Holden H T, Varisio L, Taniyama T, Pucetti P, Kirchner H, Gerson J, White S, Keirari Y, Haskil T S. Immunologic reactivity of lymphoid cells in tumors. Contemp Top Immunobiol 1980; 10: 61–78
  • Robinson M K, Truit C A, Okayasu T, Wheelock E F. Enhanced suppressor macrophage activity associated with termination of the L5778Y cell tumour-dominant state in DBA/2 mice. Cancer Res 1983; 43: 5831–5836
  • Helen H. Macrophage procoagulant factors–mediators of inflammatory and neoplastic tissue lesions. Med Biol 1986; 64: 167–176
  • Farram E, Geczy C L, Moon D K, Hopper K. The ability of lymphokine and lipopolysaccharide to induce procoagulant activity in mouse macrophage cell lines. J Immunol 1983; 130: 2750–2756
  • Edgington T S, Levy G A, Schwartz B A, Fair D S. A unidirectional pathway of lymphocyte-instructed macrophage and monocyte function characterized by the generation of procoagulant monokines. Advances in Immunopathology, W O Weigle. Elsevier, North Holland Inc., New York 1981; 173–196
  • Edwards R L, Cosgrove J, Rickles F R. Monocyte tissue factor generation does not require lymphocyte cooperation. Thromb Haemostas 1985; 54: 121
  • Semenaro N. Interactions of platelets, leucocytes, and endothelium with bacterial endotoxins: Possible relevance in kidney disorders. Hemostasis, Prostaglandins, and Renal Disease, G. Remuzzi, G. Meccfa, G de Gaetano. Raven Press, New York 1980; 99–116
  • Geczy C L. The role of lymphokines in delayed-type hypersensitivity reactions. Springer Semin Immunopathol 1984; 7: 321–346
  • Lyberg T, Prydz H. Is lymphocyte cooperation necessary for thromboplastin synthesis by human monocytes?. Clin Exp Immunol 1983; 53: 731–738
  • Rivers R PA, Hathway W E, Weston W L. The endotoxin-induced coagulant activity of human monocytes. Br J Haematol 1975; 30: 311–316
  • Helen H J, Fox R I, Edgington T S. The instructor cell for the human procoagulant monocyte response to bacterial lipopolysaccharide is a Leu3a+ T cell by fluorescence-activity cell sorting. J Immunol 1983; 131: 749–752
  • Geczy C L, Hopper K E. A mechanism of migration inhibition in delayed type hypersensitivity reactions. II. Lymphokines promote procoagulant activity of macrophages in vitro. J Immunol 1981; 126: 1059–1065
  • Neimetz J, Fani K. Role of leukocytes in blood coagulation and the generalized Shwartzman reaction. Nature (New Biol) 1971; 232: 247–248
  • Thiagarajan P, Niemetz J. Procoagulant-tissue factor activity of circulating peripheral blood leukocytes. Results of in vivo studies. Thromb Res 1980; 17: 891–896
  • Osterud B, Rapaport J I. Activation of factor IX by the reaction product of tissue factor and factor VII. Additional pathway for initiating blood coagulation. Proc Natl Acad Sci USA 1977; 74: 5260–5264
  • Rickles F R, Edward R L. Activation of blood coagulation in cancer: Trousseau's sign revisited. Blood 1983; 62: 14–31
  • Cole E H, Schulman J, Urowitz M, Keystone E, Williams C, Levy G A. Monocyte procoagulant activity in glomerulonephritis associated with systemic lupus erythematosis. J Clin Invest 1985; 75: 861–868
  • Unanue E R, Allen P M. The basis for the immunoregularity role of macrophages and other accessory cells. Science 1987; 236: 551–557
  • Dower S K, Kronheim S R, March C J, Conlon P J, Hopp T P, Gillis S, Urdal D L. Detection and characterization of high affinity plasma membrane receptors for human interleukin I. J Exp Med 1985; 162: 501–505
  • Kilian P L, Kaffka K L, Stern A S, Woehle D, Benjamin W R, Dechiara T M, Gubler U, Farrar J J, Mizel S B, Lomedico P T. Interleukin 1 alpha and interleukin 1 beta bind to the same receptor on T cells. J Immunol 1986; 136: 4509–4514
  • Matsushima T, Akahoshi M, Yamada Y, Furutani J. Properties of a specific interleukin 1 (IL 1) receptor on human Epstein-Barr vinds – transformed B lymphocytes. Identity of the receptor for IL 1-alpha and IL 1-beta. J Immunol 1986; 136: 4496–4502
  • Kurt-Jones E A, Beller D I, Mizel S, Unanue E R. Identification of a membrane-associated interleukin 1 in macrophages. Proc Natl Acad Sci USA 1985; 82: 1204–1208
  • Larsson E L, Iscove N N, Coutinho A. Two distinct factors are required for induction of T-cell growth. Nature 1980; 283: 664–66
  • Smith K A, Lachman L B, Oppenheim J J, Favata M F. The functional relationships of the interleukins. J Exp Med 1980; 151: 1151–1556
  • Gillis S, Mizel S B. T-cell lymphoma model for the analysis of interleukin 1 -mediated T-cell activation. Proc Natl Acad Sci USA 1981; 78: 1133–1137
  • Lowenthal J W, Cerothini J C, MacDonald H R. Interleukin 1-dependent induction of both interleukin 1 secretion and interleukin 2 receptor expression by thymoma cells. J Immunol 1986; 137: 1226–1231
  • Snyder D S, Beller E R, Unanue E R. Prostaglandins modulate macrophage la expression. Nature 1982; 299: 163–165
  • Tripp C S, Wyche A, Unanue E R, Needleman P S. The functional significance of the regulation of macrophage la expression by endogenous arachidonate metabolites in vitro. J Immunol 1986; 137: 3915–3920
  • Blanden R V, Hodgkin P D, Hill A, Sinickas V G, Mullbacher A. Quantitative considerations of T-cell activation and self-tolerance. Immunol Rev. 98, (in press)
  • Ding A H, Nathan C F. Trace levels of bacterial lipopolysaccharide prevent interferon gamma or tumor necrosis factor alpha from enhancing mouse peritoneal macrophage respiratory burst capacity. J Immunol 1987; 139: 1971–1977
  • Tsunawaki S, Nathan C F. Macrophage deactivation: Altered kinetic properties of superoxide-producing enzymes after exposure to tumor cell-conditioned medium. J Exp Med 1986; 164: 1319–1331
  • Tsunawaki S, Sporn M, Ding A, Nathan C. Deactivation of macrophages by transforming growth factor-beta. Nature 1988; 334: 260–263
  • Steeg P S, Johnson H M, Oppenmheim T J. Regulation of murine macrophage la antigen expression by an immune interferon-like lymphokine: Inhibitory effect of endotoxins. J Immunol 1982; 129: 2402–2408
  • Esparza I, Green R, Schreiber R D. Inhibition of macrophage tumoricidal activity by immune complexes and altered erythrocytes. J Immunol 1983; 131: 2117–2121
  • Cross C E. Oxygen radicals and human disease. Ann Int Med 1987; 107: 526–543
  • Werb Z, Goldstein I M. Phagocytic cells: Chemotactic and effector functions of macrophages and granulocytes. Basic and Clinical Immunology, 6th ed., D P Stites, J D Stoba, J V Wells. Appleton and Lange, Norwalk 1987; 96–113

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.