2,370
Views
46
CrossRef citations to date
0
Altmetric
Research Articles

Magnetic targeting and ultrasound mediated drug delivery: Benefits, limitations and combination

, &
Pages 362-373 | Received 01 Dec 2011, Accepted 17 Feb 2012, Published online: 23 May 2012

References

  • Langer R. Drug delivery and targeting. Nature 1998; 392(6679 Suppl.)5–10
  • Harrison C. The patent cliff steepens. Nature Reviews Drug Discovery 2011; 10(1)12–3
  • Arruebo M. Drug delivery from structured porous inorganic materials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2011; 4(1)16–30
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics 2003; 36(13)R167–R81
  • Jackson JK, Pirmoradi FN, Wan CPL, Siu T, Chiao M, Burt HM. Increased accumulation of paclitaxel and doxorubicin in proliferating capillary cells and prostate cancer cells following ultrasound exposure. Ultrasonics 2011; 51(8)932–9
  • Schlicher RK, Radhakrishna H, Tolentino TP, Apkarian RP, Zarnitsyn V, Prausnitz MR. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol 2006; 32(6)915–24
  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2(3)22–32
  • Lubbe AS, Alexiou C, Bergemann C. Clinical applications of magnetic drug targeting. Journal of Surgical Research Feb, 2001; 95(2)200–6
  • Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, et al. Clinical experiences with magnetic drag targeting: A phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Research 1996; 56(20)4686–93
  • Forbes SJ, Hodgson HJF. Review article: Gene therapy in gastroenterology and hepatology. Alimentary Pharmacology and Therapeutics 1997; 11(5)823–36
  • Verma IM, Somia N. Gene therapy – Promises, problems and prospects. Nature 1997; 389(6648)239–42
  • Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews 2008; 60(11)1252–65
  • McBain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. International Journal of Nanomedicine 2008; 3(2)169–80
  • Plank C, Zelphati O, Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-Progress and prospects. Advanced Drug Delivery Reviews 2011; 63(14-15)1300–31
  • Deckers R, Rome C, Moonen CTW. The role of ultrasound and magnetic resonance in local drug delivery. Journal of Magnetic Resonance Imaging 2008; 27(2)400–9
  • Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annual Reviews in Biomedical Engineering 2007; 9: 415–47
  • Xenariou S, Griesenbach U, Liang HD, Zhu J, Farley R, Somerton L, et al. Use of ultrasound to enhance nonviral lung gene transfer in vivo. Gene Therapy 2007; 14(9)768–74
  • Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet 1999; 353(9162)1409
  • Freeman MW, Arrott A, Watson JHL. Magnetism in medicine. Journal of Applied Physics 1960; 31(5)S404–S5
  • Polyak B, Friedman G. Magnetic targeting for site-specific drug delivery: Applications and clinical potential. Expert Opinion on Drug Delivery 2009; 6(1)53–70
  • Andrä W, Nowak H. Magnetism in Medicine: A Handbook2nd. Wiley-VCH, Weinheim 2007
  • Durán JDG, Arias JL, Gallardo V, Delgado AV. Magnetic colloids as drug vehicles. Journal of Pharmaceutical Sciences 2008; 97(8)2948–83
  • Barry SE. Challenges in the development of magnetic particles for therapeutic applications. International Journal of Hyperthermia 2008; 24(6)451–66
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia 2008; 24(6)467–74
  • Kami D, Takeda S, Itakura Y, Gojo S, Watanabe M, Toyoda M. Application of magnetic nanoparticles to gene delivery. International Journal of Molecular Sciences 2011; 12(6)3705–22
  • Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG. Chemically prepared magnetic nanoparticles. International Materials Reviews 2004; 49(3-4)125–70
  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science 2002; 6(4)319–27
  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials 2005; 293(1)483–96
  • Meyers PH, Cronic F, Nice CM, Jr. Experimental approach in the use and magnetic control of metallic iron. The American Journal of Roentgenology, Radium Therapy, and Nuclear 1963; 90: 1068–77
  • Medeiros SF, Santos AM, Fessi H, Elaissari A. Stimuli-responsive magnetic particles for biomedical applications. International Journal of Pharmaceutics 2011; 403(1–2)139–61
  • Zimmerman U, Scheurich P, Pilwat G, Benz R. Cells with manipulated functions: New perspectives for cell biology, medicine, and technology. Angewandte Chemie – International Edition in English 1981; 20(4)325–44
  • Senyei A, Widder K, Czerlinski G. Magnetic guidance of drug-carrying microspheres. Journal of Applied Physics 1978; 49(6)3578–83
  • Senyei AE, Reich SD, Gonczy C, Widder KJ. In vivo kinetics of magnetically targeted low-dose doxorubicin. Journal of Pharmaceutical Sciences 1981; 70(4)389–91
  • Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE. Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin – total remission in Yoida Srcoma-bearing rats. European Journal of Cancer & Clinical Oncology. [Article] 1983; 19(1)135–9
  • Edelman ER, Brown L, Taylor J, Langer R. In vitro and in vivo kinetics of regulated drug release from polymer matrices by oscillating magnetic fields. Journal of Biomedical Materials Research 1987; 21(3)339–53
  • Hafeli UO, Sweeney SM, Beresford BA, Sim EH, Macklis RM. Magnetically directed poly(lactic acid) 90Y-microspheres: Novel agents for targeted intracavitary radiotherapy. Journal of Biomedical Materials Research 1994; 28(8)901–8
  • Hafeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM. Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nuclear Medicine and Biology 1995; 22(2)147–55
  • Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, et al. Preclinical experiences with magnetic drug targeting: Tolerance and efficacy. Cancer Research 1996; 56(20)4694–701
  • Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Research 2000; 60(23)6641–8
  • Koda J, Venook A, Walser E, Goodwin S. A multicenter, phase I/II trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to Magnetic Targeted Carriers in patients with hepatocellular carcinoma. Eur J Cancer. [Meeting Abstract] 2002; 38: S18
  • Dykxhoorn DM, Lieberman J. Running interference: Prospects and obstacles to using small interfering RNAs as small molecule drugs. Annual Review of Biomedical Engineering 2006; 8: 377–402
  • Mykhaylyk O, Vlaskou D, Tresilwised N, Pithayanukul P, Möller W, Plank C. Magnetic nanoparticle formulations for DNA and siRNA delivery. Journal of Magnetism and Magnetic Materials 2007; 311(1 SPEC. ISS.)275–81
  • Mah C, Fraites TJ, Jr, Zolotukhin I, Song S, Flotte TR, Dobson J, et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Molecular Therapy 2002; 6(1)106–12
  • Hughes C, Galea-Lauri J, Farzaneh F, Darling D. Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors. Molecular Therapy 2001; 3(4)623–30
  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, et al. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Therapy 2002; 9(2)102–9
  • Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: Polyethylenimine. Human Gene Therapy 1996; 7(16)1947–54
  • Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F, et al. The magnetofection method: Using magnetic force to enhance gene delivery. Biological Chemistry 2003; 384(5)737–47
  • Cai D, Mataraza JM, Qin ZH, Huang Z, Huang J, Chiles TC, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nature Methods 2005; 2(6)449–54
  • Bonetta L. The inside scoop – Evaluating gene delivery methods. Nature Methods 2005; 2(11)875–82
  • Kamau SW, Hassa PO, Steitz B, Petri-Fink A, Hofmann H, Hofmann-Amtenbrink M, et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Research 2006; 34(5)e.40
  • Ng KY, Liu Y. Therapeutic ultrasound: Its application in drug delivery. Medicinal Research Reviews 2002; 22(2)204–23
  • Newman CM, Lawrie A, Brisken AF, Cumberland DC. Ultrasound gene therapy: On the road from concept to reality. Echocardiography 2001; 18(4)339–47
  • Yuh EL, Shulman SG, Mehta SA, Xie J, Chen L, Frenkel V, et al. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: Study in a murine model. Radiology 2005; 234(2)431–7
  • Azhari H. Basics of Biomedical ultrasound for engineers1st. John Wiley and sons, Inc., New Jersey 2010
  • Ferrara KW. Driving delivery vehicles with ultrasound. Advanced Drug Delivery Reviews 2008; 60(10)1097–102
  • Bailey MR, Khokhlova VA, Sapozhnikov OA, Kargl SG, Crum LA. Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoustical Physics 2003; 49(4)369–88
  • Apfel RE. Sonic effervescence: A tutorial on acoustic cavitation. Journal of the Acoustical Society of America 1997; 101(3)1227–37
  • Iwanaga K, Tominaga K, Yamamoto K, Habu M, Maeda H, Akifusa S, et al. Local delivery system of cytotoxic agents to tumors by focused sonoporation. Cancer Gene Therapy 2007; 14(4)354–63
  • Meairs S, Alonso A. Ultrasound, microbubbles and the blood-brain barrier. Progress in Biophysics and Molecular Biology 2007; 93(1-3)354–62
  • Nyborg WL. Ultrasonic microstreaming and related phenomena. British Journal of Cancer 1982; 45(Suppl. 5)156–60
  • Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003; 423(6936)153–6
  • O'Neill BE, Li KCP. Augmentation of targeted delivery with pulsed high intensity focused ultrasound. International Journal of Hyperthermia 2008; 24(6)506–20
  • Meltzer RS, Tickner EG, Sahines TP, Popp RL. The source of ultrasound contrast effect. Journal of Clinical Ultrasound 1980; 8(2)121–7
  • Harvey CJ, Pilcher JM, Eckersley RJ, Blomley MJK, Cosgrove DO. Advances in ultrasound. Clinical Radiology 2002; 57(3)157–77
  • Nanda NC. History of echocardiographic contrast agents. Clinical Cardiology 1997; 20(10 SUPPL.)I7–I11
  • Klibanov AL. Ligand-carrying gas-filled microbubbles: Ultrasound contrast agents for targeted molecular imaging. Bioconjugate Chem. [Article] 2005; 16(1)9–17
  • Quaia E. Contrast Media in Ultrasonography: Basic principles and clinical applications. Berlin: Springer-Verlag. 2005
  • Unger EC, Hersh E, Vannan M, McCreery T. Gene delivery using ultrasound contrast agents. Echocardiography 2001; 18(4)355–61
  • Unger EC, McCreery TP, Sweitzer RH, Caldwell VE, Wu YQ. Acoustically active lipospheres containing paclitaxel – A new therapeutic ultrasound contrast agent. Investigative Radiology 1998; 33(12)886–92
  • Tachibana K, Tachibana S. Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 1995; 92(5)1148–50
  • Lindner JR, Kaul S. Delivery of drugs with ultrasound. Echocardiography 2001; 18(4)329–37
  • Wu Y, Unger EC, McCreery TP, Sweitzer RH, Shen D, Wu G, et al. Binding and lysing of blood clots using MRX-408. Investigative Radiology 1998; 33(12)880–5
  • Prentice P, Cuschierp A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by optically controlled microbubble cavitation. Nature Physics 2005; 1(2)107–10
  • Guzmán HR, Nguyen DX, Khan S, Prausnitz MR. Ultrasound-mediated disruption of cell membranes. I. Quantification of molecular uptake and cell viability. Journal of the Acoustical Society of America 2001; 110(1)588–96
  • Guzmán HR, Nguyen DX, Khan S, Prausnitz MR. Ultrasound-mediated disruption of cell membranes. II. Heterogeneous effects on cells. Journal of the Acoustical Society of America 2001; 110(1)597–606
  • Price RJ, Skyba DM, Kaul S, Skalak TC. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 1998; 98(13)1264–7
  • Lentacker I, Geers B, Demeester J, De Smedt SC, Sanders NN. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: Cytotoxicity and mechanisms involved. Molecular Therapy 2010; 18(1)101–8
  • Lindner JR, Coggins MP, Kaul S, Klibanov AL, Brandenburger GH, Ley K. Microbubble persistence in the microcirculation during ischemia/reperfusion and inflammation is caused by integrin- and complement- mediated adherence to activated leukocytes. Circulation 2000; 101(6)668–75
  • Villanueva FS, Jankowski RJ, Klibanov S, Pina ML, Alber SM, Watkins SC, et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 1998; 98(1)1–5
  • Lum AFH, Borden MA, Dayton PA, Kruse DE, Simon SI, Ferrara KW. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. Journal of Controlled Release 2006; 111(1–2)128–34
  • Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Human Gene Therapy 1996; 7(11)1339–46
  • Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, Greenleaf JF. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound in Medicine and Biology 1998; 24(4)587–95
  • Lawrie A, Brisken AF, Francis SE, Cumberland DC, Crossman DC, Newman CM. Microbubble-enhanced ultrasound for vascular gene delivery. Gene Therapy 2000; 7(23)2023–7
  • Li T, Tachibana K, Kuroki M. Gene Transfer with Echo-enhanced Contrast Agents: Comparison between Albunex, Optison, and Levovist in Mice – Initial Results. Radiology 2003; 229(2)423–8
  • Rahim A, Taylor SL, Bush NL, ter Haar GR, Bamber JC, Porter CD. Physical parameters affecting ultrasound/microbubble-mediated gene delivery efficiency in vitro. Ultrasound in Medicine and Biology 2006; 32(8)1269–79
  • Unger EC, Hersh E, Vannan M, Matsunaga TO, McCreery T. Local drug and gene delivery through microbubbles. Progress in Cardiovascular Diseases 2001; 44(1)45–54
  • Shohet RV, Chen S, Zhou YT, Wang Z, Meidell RS, Unger RH, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000; 101(22)2554–6
  • Tsunoda S, Mazda O, Oda Y, Iida Y, Akabame S, Kishida T, et al. Sonoporation using microbubble BR14 promotes pDNA/siRNA transduction to murine heart. Biochemical and Biophysical Research Communications 2005; 336(1)118–27
  • Kodama T, Aoi A, Watanabe Y, Horie S, Kodama M, Li L, et al. Evaluation of transfection efficiency in skeletal muscle using nano/microbubbles and ultrasound. Ultrasound Med Biol 2010; 36(7)1196–205
  • Geers B, Lentacker I, Sanders NN, Demeester J, Meairs S, De Smedt SC. Self-assembled liposome-loaded microbubbles: The missing link for safe and efficient ultrasound triggered drug-delivery. Journal of Controlled Release 2011; 152(2)249–56
  • Cochran MC, Eisenbrey J, Ouma RO, Soulen M, Wheatley MA. Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery. International Journal of Pharmaceutics 2011; 414(1–2)161–70
  • Thanh NTK, Magnetic Nanoparticles: From Fabrication to Clinical Applications. CRC Press, Taylor and Francis Group, Boca Raton 2011
  • Hynynen K. MRIgHIFU: A tool for image-guided therapeutics. Journal of Magnetic Resonance Imaging 2011; 34(3)482–93
  • D'Arrigo JS, Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles. US Patent US5215680. 1993
  • Smith MJ, Ho VHB, Darton NJ, Slater NKH. Effect of Magnetite Nanoparticle Agglomerates on Ultrasound Induced Inertial Cavitation. Ultrasound Med Biol 2009; 35(6)1010–4
  • Saravanan M, Bhaskar K, Maharajan G, Pillai KS. Ultrasonically controlled release and targeted delivery of diclofenac sodium via gelatin magnetic microspheres. International Journal of Pharmaceutics 2004; 283(1–2)71–82
  • Kaminski MD, Xie Y, Mertz CJ, Finck MR, Chen H, Rosengart AJ. Encapsulation and release of plasminogen activator from biodegradable magnetic microcarriers. European Journal of Pharmaceutical Sciences 2008; 35(1–2)96–103
  • Wong KK, Huang I, Kim YR, Tang H, Yang ES, Kwong KK, et al. In vivo study of microbubbles as an MR susceptibility contrast agent. MagnResonMed 2004; 52(3)445–52
  • Yang F, Li L, Li Y, Chen Z, Wu J, Gu N. Superparamagnetic nanoparticle-inclusion microbubbles for ultrasound contrast agents. Physics in Medicine and Biology 2008; 53(21)6129–41
  • Yang F, Li Y, Chen Z, Zhang Y, Wu J, Gu N. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Biomaterials 2009; 30(23–24)3882–90
  • Park JI, Jagadeesan D, Williams R, Oakden W, Chung S, Stanisz GJ, et al. Microbubbles loaded with nanoparticles: A route to multiple imaging modalities. ACS Nano 2010; 4(11)6579–86
  • Soetanto K, Watarai H. Development of magnetic microbubbles for drug delivery system (DDS). Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers 2000; 39(5 B)3230–2
  • Soetanto K, Watarai H, Ferromagnetic Ultrasound Microbubbles Contrast Agent. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2003;2:1226–29
  • Stride E, Porter C, Prieto AG, Pankhurst Q. Enhancement of Microbubble Mediated Gene Delivery by Simultaneous Exposure to Ultrasonic and Magnetic Fields. Ultrasound in Medicine & Biology 2009; 35(5)861–8
  • Mulvana H, Eckersley RJ, Browning R, Hajnal JV, Stride E, Barrack T, Tang, M. Pankhurst, Q. Wells, D. editors. Enhanced gene transfection in vivo using magnetic localisation ofultrasound contrast agents: Preliminary results. Proceedings of the IEEE Ultrasonics Symposium 2010; 670-73
  • Vlaskou D, Mykhaylyk O, Krötz F, Hellwig N, Renner R, Schillinger U, Gleich B, Heidsieck A, Schmitz G, Hensel K, Plank C. Magnetic and Acoustically Active Lipospheres for Magnetically Targeted Nucleic Acid Delivery. Advanced Functional Materials 2010; 20(22)3881–94
  • Vlaskou D, Pradhan P, Bergemann C, Klibanov AL, Hensel K, Schmitz G, Plank C, Mykhaylyk O, editors. Magnetic microbubbles: Magnetically targeted and ultrasound-triggered vectors for gene delivery in vitro. AIP Conference Proceedings 8th International conference on the scientific and clinical applications of magnetic carriers. 2010; 1311:485–94
  • Allen LM, Kent T, Wolfe C, Ficco C, Johnson J. A magnetically targetable drug carrier for paclitaxel. Scientific and Clinical Applications of Magnetic Carriers, Häfeli Urs, Schütt Wolfgang, Teller Joachim, Zborowski Maciej. Plenum Press, New York 1997; 481–494

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.