19,997
Views
442
CrossRef citations to date
0
Altmetric
Review Article

Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review

, , , , &
Pages 513-523 | Received 17 Apr 2014, Accepted 28 Sep 2014, Published online: 30 Oct 2014

References

  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–604
  • Shigenaga MK, Hagen TM, Ames BN. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 1994;91:10771–8
  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;555:335–44
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95
  • Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci 2000;899:191–208
  • Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, et al. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 1994;269:26066–75
  • Kaur H, Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation: Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 1994;350:9–12
  • Richter C, Park JW, Ames BN. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 1988;85:6465–7
  • LeDoux SP, Driggers WJ, Hollensworth BS, Wilson GL. Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat Res 1999;434:149–59
  • Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973;134:707–16
  • Mujahid A, Pumford NR, Bottje W, Nakagawa K, Miyazawa T, Akiba M, et al. Mitochondrial oxidative damage in chicken skeletal muscle induced by acute heat stress. J Poult Sci 2007;44:439–45
  • Mujahid A, Sato K, Akiba Y, Toyomizu M. Acute heat stress stimulates mitochondrial superoxide production in broiler skeletal muscle, possibly via downregulation of uncoupling protein content. Poult Sci 2006;85:1259–65
  • Brooks GA, Hittelman KJ, Faulkner JA, Beyer RE. Temperature, skeletal muscle mitochondrial functions, and oxygen debt. Am J Physiol 1971;220:1053–9
  • Salo D, Donovan C, Davies K. Hsp70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med 1991;11:239–46
  • Hall DM, Buettner GR, Matthes RD, Gisolfi CV. Hyperthermia stimulates nitric oxide formation: Electron paramagnetic resonance detection of .NO-heme in blood. J Appl Physiol 1994;77:548–53
  • Messner KR, Imlay JA. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J Biol Chem 1999;274:10119–28
  • Davidson JF, Schiestl RH. Mitochondrial respiratory electron carriers are involved in oxidative stress during heat stress in Saccharomyces cerevisiae. Mol Cel Biol 2001;21:8483–9
  • El-Orabi NF, Rogers C, Edwards HG, Schwartz DD. Heat-induced inhibition of superoxide dismutase and accumulation of reactive oxygen species leads to HT-22 neuronal cell death. J Thermal Biol 2011;36:49–56
  • Freeman ML, Spitz DR, Meredith MJ. Does heat shock enhance oxidative stress? Studies with ferrous and ferric iron. Radiat Res 1990;124:288–93
  • Agarwal A, Prabhakaran SA. Mechanism, measurement and prevention of oxidative stress in male reproductive physiology. Indian J Exp Biol 2005;43:963–74
  • Powers RH, Stadnicka A, Kalbfleish JH, et al. Involvement of xanthine oxidase in oxidative stress and iron release during hyperthermic rat liver perfusion. Cancer Res 1992;52:1699–703
  • Beckman JS, Koppenol WH. Nitric oxide superoxide and peroxynitrite: The good the bad and the ugly. Am J Physiol 1996;271:C1424–37
  • Radi R, Cassina A, Hodara R, Quijano C, Castro L. Peroxynetrite reactions and formation in mitochondria. Free Radic Biol Med 2002;33:1451–64
  • Kikusato M, Toyomizu M. Crucial role of membrane potential in heat stress-induced overproduction of reactive oxygen species in avian skeletal muscle mitochondria. PLoS One 2013;8:e64412
  • Zhao QL, Fujiwara Y, Kondo T. Mechanism of cell death induced by nitroxide and hyperthermia. Free Radic Biol Med 2006;40:1131–43
  • Flanagan SW, Moseley PL, Buttner GR. Increased flux of free radicals in cells subjected to hyperthermia: Detection by electron paramagnetic resonance spin trapping. FEBS Lett 1998;431:285–6
  • Liochev SI, Fridovich I. Superoxide and iron: Partners in crime. IUBMB Life 1999;48:157–61
  • Kirkinezos IG, Moraes T. Reactive oxygen species and mitochondrial diseases. Cell Dev Biol 2001;12:449–57
  • Breton-Romero R, Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol 2014;2:529–34
  • Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell 2007;26:1–14
  • Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: Molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008;10:1713–65
  • Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxide synthase from rat liver mitochondria. J Biol Chem 1998;237:11044–8
  • Chen CF, Wang D, Leu FJ, Chen HI. The protective role of nitric oxide and nitric oxide synthases in whole-body hyperthermia-induced hepatic injury in rats. Int J Hyperthermia 2012;28:421–30
  • Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Ohtsubo T, Kitai R, et al. Nitric oxide is an initiator of intercellular signal transduction for stress response after hyperthermia in mutant p53 cells of human glioblastoma. Cancer Res 1999;59:3239–44
  • Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schöpfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996;328:85–92
  • Ischiropoulos H, al Mehdi AB. Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 1995;364:279–82
  • Segal AW, Abo A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci 1993;18:43–7
  • Moon EJ, Sonveaux P, Porporato PE, Danhier P, Gallez B, Batinic-Haberle I, et al. NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment. Proc Natl Acad Sci 2010;107:20477–82
  • Adachi Y, Shibai Y, Mitsushita J, Shang WH, Hirose K, Kamataet T. Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6. Oncogene 2008;27:4921–32
  • Katschinski D, Boos K, Schindler S, Fandrey J. Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 2000;28:21094–8
  • Mujahid A, Yoshiki Y, Akiba Y, Toyomizu M. Superoxide radical production in chicken skeletal muscle induced by acute heat stress. Poult Sci 2005;84:307–14
  • Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 1995;64:97–112
  • Okado-Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutase (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 2001;276:38388–93
  • Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, et al. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999;285:1393–6
  • Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 2000;351:183–93
  • Mari M, Morales A, Colell A, Garcia-Ruiz C, Fernández-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 2009;11:2685–700
  • Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA. Detection of catalase in rat heart mitochondria. J Biol Chem 1991;266:22028–34
  • Ham AJ, Liebler DC. Vitamin E oxidation in rat liver mitochondria. Biochem 1995;34:5754–61
  • Omar RA, Yano S, Kikkawa Y. Antioxidant enzymes and survival of normal and simian virus 40-transformed mouse embryo cells after hyperthermia. Cancer Res 1987;47:3473–6
  • Li JJ, Oberley LW. Overexpression of manganese-containing superoxide dismutase confers resistance to the cytotoxicity of tumor necrosis factor alpha and/or hyperthermia. Cancer Res 1997;57:1991–8
  • Kuninaka S, Ichinose Y, Koja K, Toh Y. Suppression of manganese superoxide dismutase augments sensitivity to radiation, hyperthermia and doxorubicin in colon cancer cell lines by inducing apoptosis. Br J Cancer 2000;83(7):928–934
  • Moriyama-Gonda N, Igawa M, Shiina H, Urakami S, Shigeno K, Terashima M. Modulation of heat-induced cell death in PC-3 prostate cancer cells by the antioxidant inhibitor diethyldithiocarbamate. BJU Int 2002;90:317–25
  • Yang CY, Lin MT. Oxidative stress in rats with heatstroke-induced cerebral ischemia. Stroke 2002;33:790–94
  • Morrison JP, Coleman MC, Aunan ES, Walsh SA, Spitz DR, Kregel KC. Aging reduces responsiveness to BSO- and heat stress-induced perturbations of glutathione and antioxidant enzymes. Am J Physiol Regul Integr Comp Physiol 2005;289:R1035–41
  • Lushchk VI, Bagnyukova TV. Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comp Biochem Physiol C Toxicol Pharmacol 2006;143:36–41
  • Mitchell JB, Russo A, Kinsellaa TJ, Glatstein E. Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res 1983;43:987–91
  • Mitchell JB, Russo A. Thiols, thiol depletion, and thermosensitivity. Radiation Res 1983;95:471–85
  • Russo A, Mitchell JB, McPherson S. The effects of glutathione depletion on thermotolerance and heat stress protein synthesis. Br J Cancer 1984;49:753–8
  • Sreedhar AS, Pardhasaradhi BVV, Khar A, Srinivas UK. A cross talk between cellular signaling and cellular redox state during heat-induced apoptosis in a rat histiocytoma. Free Radic Biol Med 2002;32:221–7
  • Shrieve DC, Li GC, Astromoff A, Harris JW. Cellular glutathione, thermal sensitivity, and thermotolerance in Chinese hamster fibroblasts and their heat-resistant variants. Cancer Res 1986;46:1684–7
  • Macho A, Harsch T, Marzo I, Marchetti P, Dallaporta B, Susin SA, et al. Glutathione depletion is an early and calcium elevation is a late event thymocyte apoptosis. J Immunol 1997;158:4612–19
  • Pitkanen S, Robinson BH. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest 1996;98:345–51
  • Luo X, Pitkanen S, Kassovska-Bratinova S, Robinson BH, Lehotay DC. Excessive formation of hydroxyl radicals and aldehydic lipid peroxidation products in cultured skin fibroblasts from patients with complex I deficiency. J Clin Invest 1997;99:2877–82
  • Robinson BH. Diagnosis of mitochondrial energy metabolism defects in tissue culture. Induction of MnSOD and Bcl-2 in mitochondria from patients with complex I (NADH-Coq reductase) deficiency. Biofactors 1998;7:229–30
  • Wang Z, Cai F, Chen X, Luo M, Hu L, Lu Y. The role of mitochondria derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS One 2013;8:e75044
  • Mitchell P. Vectoriel chemiosmotic processes. Annu Rev Biochem 1977;46:996–1005
  • Noji H, Yoshida M. The rotary machine in the cell ATP synthase. J Biol Chem 2001;276:1665–8
  • Voinikov VK, Rudikovsky AV, Pobezhimova TP, Varakina NN. The effect of heat shock proteins on maize mitochondria activity. Plant Physiol (Life Sci Adv) 1989;8:1–4
  • Chou M, Chen Y-M, Lin C-Y. Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol 1989;89:617–21
  • Monti E, Supino R, Colleoni M, Costa B, Ravizza R, Gariboldi MB. Nitroxide TEMPOL impairs mitochondrial function and induces apoptosis in HL60 cells. J Cell Biochem 2001;82:271–6
  • Downs CA, Heckathorn SA. The mitochondrial small heat shock protein protects NADH: Ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett 1998;430:246–50
  • Lin TK, Hughes G, Muratovska A, Blaikie FH, Brookes PS, Darley-Usmar V, et al. Specific modification of mitochondrial protein thiols in response to oxidative stress: A proteomics apporoach. J Biol Chem 2002;277:17048–56
  • England K, O’Driscoll C, Cotter TG. Carbonylation of glycolytic proteins is a key response to drug-induced oxidative stress and apoptosis. Cell Death Differ 2004;11:252–60
  • Colussi C, Albertini MC, Coppola S, Rovidati S, Galli F, Ghibelli L. H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis. FASEB J 2000;14:2266–76
  • Troyano A, Sancho P, Fernandez C, de Blas E, Bernardi P, Aller P. The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ 2003;10:889–98
  • Pobezhimova T, Voinikov V, Varakina N. Inactivation of complex I of the respiratory chain of maize mitochondria incubated in vitro by elevated temperature. J Therm Biol 1996;5:283–8
  • Rustin P, Lance C. Malate metabolism in leaf mitochondria from the crassulacean acid metabolism plant Kalanchoë blossfeldiana pollen. Plant Physiol 1986;81:1039–43
  • Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J 1972;128:617–30
  • Girotti AW. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 1998;39:1529–42
  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 2006;141:357–66
  • Valko M, Rhodes CJ, Moncol J, Izakivic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1–40
  • Pinchuk I, Schnitzer E, Lichtenberg D. Kinetic analysis of copper-induced peroxidation of LDL. Biochem Biophys Acta 1998;1389:155–72
  • Trachootham D, Lu W, Ogasawara MA, Valle NR, Huang P. Redox regulation of cell survival. Antioxid Redox Signal 2008;10:1343–74
  • Yokoyama Y, Beckman JS, Beckman TK, Wheat JK, Cash TG, Freeman BA, et al. Circulating xanthine oxidase: Potential mediator of ischemic injury. Am J Physiol 1990;258:G564–70
  • Schaur RJ. Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med 2003;24:149–59
  • Taylor NL, Heazlewood JL, Day DA, Millar AH. Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 2005;4:1122–33
  • Winger AM, Millar AH, Day DA. Sensitivity of plant mitochondrial terminal oxidases to the lipid peroxidation product 4-hydroxy-2-nonenal (HNE). Biochem J 2005;387:865–70
  • Sakamoto A, Tsukamoto S, Yamamoto H, Udea-Hashimoto M, Takahashi M, Suzuki H, et al. Functional complementation in yeast reveals a protective role of chloroplast 2-Cys peroxiredoxin against reactive nitrogen species. Plant J 2003;33:841–51
  • Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997;324:1–18
  • Verniquet F, Gaillard J, Neuburger M, Douce R. Rapid inactivation of plant aconitase by hydrogen peroxide. Biochem J 1991;276:643–8
  • Flint DH, Tuminello JF, Emptage MH. The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem 1993;268:22369–76
  • Berlett BS, Stadtman ER. Protein oxidation in aging, disease and oxidative stress. J Biol Chem 1997;272:20313–16
  • Stadtman ER. Role of oxidant species in aging. Curr Med Chem 2004;11:1105–12
  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001;30:463–88
  • Poppek D, Grune T. Proteosomal defense of oxidative protein modifications. Antioxid Redox Signal 2006;8:173–84
  • Melegh B, Bock I, Gàti I, Méhes K. Multiple mitochondrial DNA deletions and persistent hyperthermia in a patient with Brachmann–de Lange phenotype. Am J Med Genet 1996;65:82–8
  • Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 1997;94:514–19
  • Eppink B, Krawczyk PM, Stap J, Kannar R. Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperthermia 2012;28:509–17
  • Palmieri F. Mitochondrial carrier proteins. FEBS Lett 1994;346:48–54
  • Himms-Hagen J. Brown adipose tissue metabolism and thermogenesis. Annu Rev Nutr 1985;5:69–94
  • Champigny O, Ricquier D. Effects of fasting and refeeding on the level of uncoupling proteins mRNA in rat brown adipose tissue, evidence for diet-induced and cold- induced responses. J Nutr 1990;120:1730–36
  • Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997;387:90–94
  • Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, et al. Uncoupling protein-2, a novel gene linked to obesity and hyperinsulinemia. Nat Genet 1997;15:269–72
  • Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydou J, et al. Uncoupling protein-3, a new member of the mitochondrial carrier family with tissue specific expression. FEBS Lett 1997;408:39–42
  • Acin A, Rodriguez M, Rique H, Canet E, Boutin JA, Galizzi JP. Cloning and characterization of the 59 flanking region of the human uncoupling protein-3 (UCP3) gene. Biochem Biophys Res Commun 1999;258:278–83
  • Adams SA. Uncoupling protein homologs: Emerging views of physiological function. J Nutr 2000;130:711–14
  • Boss O, Hagen T, Lowell BB. Uncoupling proteins 2 and 3, potential regulators of mitochondrial energy metabolism. Diabetes 2000;49:143–56
  • Dullo AG, Samec S. Uncoupling proteins, their roles in adaptive thermogenesis and substrate metabolism reconsidered. Br J Nutr 2001;86:123–39
  • Criscuolo F, Gonzales-Barroso MM, Maho YL, Ricquier D, Bouillaud F. Avian uncoupling protein expressed in yeast mitochondria prevents endogenous free radical damage. Proc Biol Sci 2005;272:803–10
  • Casteilla L, Rigoulet M, Penicaud L. Mitochondrial ROS metabolism: Modulation by uncoupling proteins. IUBMB Life 2001;52:181–8
  • Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otn M, et al. A signaling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 2003;22:4103–10
  • Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004;305:626–9
  • Callahan TE, Marins J, Welch WJ, Horn JK. Heat shock attenuates oxidation and accelerates apoptosis in human neutrophils. J Surg Res 1998;85:317–22
  • Du J, Di HS, Guo L, Li ZH, Wang GL. Hyperthermia causes bovine mammary epithelial cell death by a mitochondrial-induced pathway. J Therm Biol 2007;33:37–47
  • Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 2000;345:271–8
  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, et al. Proapoptotic Bax and Bak: A requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–30
  • Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y. Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 2001;152:237–50
  • Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341:233–49
  • Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F. The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 2001;276:12030–34
  • Rizzuti R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998;280:1763–6
  • Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, et al. Bax and Bak regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science 2003;300:135–9
  • Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol 2003;4:552–65
  • Halestrap AP, Woodfield KY, Connern CP. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 1997;272:3346–54
  • He L, Lemasters JJ. Regulated and unregulated mitochondrial permeability transition pores: A new paradigm of pore structure and function. FEBS Lett 2002;512:1–7
  • Adrain C, Creagh ME, Martin SJ. Apoptosis associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 2001;20:6627–36
  • Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309–18
  • Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000;6:513–19
  • Ott M, Robertson JD, Gogvadeze V, Zhivotovsky B, Orrenus S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 2002;99:1259–63
  • Oppenheim RW, Flavell RA, Vinsant S, Prevette D, Kuan CY, Rakic P. Programmed cell death of developing mammalian neurons after genetic deletion of caspases. J Neurosci 2001;21:4752–60
  • Kawahara A, Ohsawa Y, Matsumura H, Uchiyama Y, Nagata S. Caspase-independent cell killing by Fas-associated protein with death domain. J Cell Biol 1998;143:1353–60
  • Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, et al. Bcl-2 inhibition of neuronal death: Decreased generation of reactive oxygen species. Science 1993;262:1274–77
  • Shimizu S, Eguchi Y, Kamiike W, Waguri S, Uchiyama Y, Matsuda H, et al. Retardation of chemical hypoxia induced necrotic cell death by Bcl-2 and ICE inhibitors: Possible involvement of common mediators in apoptotic and necrotic signal transductions. Oncogene 1996;12:2045–50
  • Morimoto RI, Tissieres A, Georgopoulos C. Stress Proteins in Biology and Medicine. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1990
  • Ahmed K, Furusawa Y, Tabuchi Y, Emam HF, Piao JL, Hassan MA, et al. Chemical inducers of heat shock proteins derived from medicinal plants and cytoprotective genes response. Int J Hyperthermia 2012;28:1–8
  • Gupta M, Kumar S, Dangi SS, Jangir BL. Physiological, biochemical and molecular responses to thermal stress in goats. Int J Livestock Res 2013;3:27–38
  • Sreedhar AS, Pardhasaradhi BVV, Khar A, Srinivas UK. Heat induced expression of CD95 and its correlation with the activation of apoptosis upon heat shock in rat histiocytic tumor cells. FEBS Lett 2000;472:271–5
  • Botzler C, Schmidt J, Luz A, Jennen L, Issels R, Multhoff G. Differential Hsp70 plasma-membrane expression on primary human tumors and metastases in mice with severe combined immunodeficiency. Int J Cancer 1998;77:942–8
  • Roigas J, Wallwn ES, Loenings SA. Heat shock protein (Hsp72) surface expression enhances the lyses of a human renal cell carcinoma by IL-2 stimulated NK-cells. Adv Exp Med Biol 1998;451:225–9
  • Nadin SB, Cuello-Carrión FD, Sottile ML, Ciocca DR, Vargas-Roig LM. Effects of hyperthermia on Hsp27 (HSPB1), Hsp72 (HSPA1A) and DNA repair proteins hMLH1 and hMSH2 in human colorectal cancer hMLH1-deficient and hMLH1-proficient cell lines. Int J Hyperthermia 2012;28:191–201
  • Srinivas UK, Swamynathan SK. Role of heat shock transcription factors in stress response and during development. J Biosci 1996;21:103–21
  • Deckers R, Debeissat C, Fortin PY, Moonen CTW, Couillaud F. Arrhenius analysis of the relationship between hyperthermia and Hsp70 promoter activation: A comparison between ex vivo and in vivo data. Int J Hyperthermia 2012;28:441–50
  • He L, Lemasters JJ. Heat shock suppresses the permeability transition in rat liver mitochondria. J Biol Chem 2003;278:16755–60
  • Samali A, Robertson JD, Peterson E, Manero F, Van Zeijil L, Paul C, et al. Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress Chaperones 2001;6:49–58
  • Klein SD, Brune B. Heat shock protein 70 attenuates nitric oxide-induced apoptosis in RAW macrophages by preventing cytochrome c release. Biochem J 2002;362:635–41
  • Sancho P, Troyano A, Fernandez C, De Blas E, Aller P. Differential effects of catalase on apoptosis induction in human promonocytic cells. Relationship with heat shock protein expression. Mol Pharmacol 2003;63:581–9
  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, et al. Heat shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2000;2:469–75
  • Saleh A, Srinivasula SM, Balkhir L, Robbins PD, Alnemri ES. Negative regulation of Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2000;2:476–83
  • Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000;2:645–52
  • Halliwell B. Antioxidants: The basics – What they are and how to evaluate them. Adv Pharmacol 1997;38:3–20
  • Kapiszewska M, Hopwood LE. Mechanisms of membrane damage for CHO cells heated in suspension. J Cancer Res Clin Oncol 1988;114:23–9
  • Malayer JR, Pollard JW, Hansen PJ. Modulation of thermal killing of bovine lymphocytes and preimplantation of mouse embryos by alanine and taurine. Am J Vet Res 1992;53:689
  • Ealy AD, Drost M, Barros CM, Hansen PJ. Thermoprotection of preimplantation bovine embryos from heat shock by glutathione and taurine. Cell Biol Int Rep 1992;16:125–31
  • Kamwanja LA, Chase CC, Gutierrez JA, Guerriero V, Olson TA, Hammond AC, Hansen PJ. Responses of bovine lymphocytes to heat shock as modified by breed and antioxidant status. J Animal Sci 1994;72:438–44
  • Kim JH, Kim SH, Hahn EW, Song CW. 5-Thio-o-glucose selectively potentiates hyperthermic killing of hypoxic tumor cells. Science 1978;200:206–7
  • Kapp DS, Hahn GM. Thermosensitization by sulfhydryl compounds of exponentially growing Chinese hamster cells. Cancer Res 1979;39:4630–5
  • Lord-Fontaine S, Averill-Bates DA. Heat shock inactivates cellular antioxidant defenses against hydrogen peroxide: Protection by glucose. Free Radical Biol Med 2002;32:752–65
  • Henle KJ, Warters RL. Heat protection by glycerol in vitro. Cancer Res 1982;42:2171–6
  • Yarema RR, Ohorchak A, Zubarev GP, Mylyan YP, Oliynyk YY, Zubarev MG, et al. Hyperthermic intraperitoneal chemoperfusion in combined treatment of locally advanced and disseminated gastric cancer: Results of a single-centre retrospective study. Int J Hyperthermia 2014;30:159–65
  • Coss RA, Storck CW, Wells TC, Kulp KK, Wahl M, Leeper DB. Thermal sensitisation by lonidamine of human melanoma cells grown at low extracellular pH. Int J Hyperthermia 2014;30:75–8
  • Hettinga JV, Konings AW, Kampinga HH. Reduction of cellular cisplatin resistance by hyperthermia – A review. Int J Hyperthermia 1997;13:439–57
  • Hildebrandt B, Loeffel J, Deja M, Kerner T, Rick O, Bechstein W, et al. Whole body hyperthermia induces a renewed remission in a patient with refractory germ cell tumor after high-dose chemotherapy. Ann Hematol 1998;77:S222
  • Petryk AA, Giustini AJ, Gottesman RE, Kaufman PA, Hoopes PJ. Magnetic nanoparticle hyperthermia enhancement of cisplatin chemotherapy cancer treatment. Int J Hyperthermia 2013;29:845–51
  • Hahn GM. Hyperthermia and Cancer. New York: Plenum Press; 1982
  • Dahl O. Mechanisms of thermal enhancement of chemotherapeutic cytotoxicity. In: Urano M, Douple E, editors. Hyperthermia and Oncology. Volume 4. Utrecht: VSP; 1994. pp 9–28
  • Urano M, Douple E. Hyperthermia and Oncology. Volume 4. Utrecht: VSP; 1994
  • Wust P, Hildebrant B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3:487–97
  • Viglianti BL, Stauffer P, Repasky E, Jones E, Vujaskovic Z, Dewhirst M. Hyperthermia. In: Hong WK, Bast RC, Hait WN, Kufe DW, Pollok RE, Weichselbaum RR, et al, editors. Cancer Medicine, 8th ed. Beijing, China: People’s Medical Publishing House; 2010. pp 528–40
  • Overgaard J, Gonzalez Gonzalez D, Hulshof MCCM, Arcangeli G, Dahl O, Mella O, et al. Randomised trial of hyperthermia as adjuvant to radiotherapy for recurrent or metastatic malignant melanoma. Lancet 1995;345:540–3
  • Franckena M. Review of radiotherapy and hyperthermia in primary cervical cancer. Int J Hyperthermia 2012;28:543–8
  • Dayanc BE, Bansal S, Gure AO, Gollnick SO, Repasky EA. Enhanced sensitivity of colon tumor cells to natural killer cell cytotoxicity after mild thermal stress is regulated through HSF1-mediated expression of MICA. Int J Hyperthermia 2013;29:480–90
  • Csoboz B, Balogh GE, Kusz E, Gombos I, Peter M, Crul T, et al. Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes. Int J Hyperthermia 2013;29:491–9
  • Vernon CC, van der Zee J, Liu FF. Radiotherapy with or without hyperthermia in the treatment of superficial localized breast cancer: Results from five randomized controlled trials. Int J Radiat Oncol Biol Phys 1996;35:731–44
  • Schildkopf P, Ott OJ, Frey B, Wadepohl M, Sauer R, Fietkau R, et al. Biological rationales and clinical applications of temperature controlled hyperthermia – Implications for multimodal cancer treatments. Curr Med Chem 2010;17:3045–57
  • Ihara M, Takeshita S, Okaichi K, Okumura Y, Ohnishi T. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair. Int J Hyperthermia 2014;30:102–9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.