3,290
Views
120
CrossRef citations to date
0
Altmetric
Review Article

Thermometry and ablation monitoring with ultrasound

, &
Pages 163-181 | Received 27 Nov 2014, Accepted 13 Jan 2015, Published online: 10 Mar 2015

References

  • Rivens I, Shaw A, Civale J, Morris H. Treatment monitoring and thermometry for therapeutic focused ultrasound. Int J Hyperthermia 2007;23:121–39
  • Borrelli MJ, Thompson LL, Cain CA, Dewey WC. Time–temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5 °C to 57.0 °C. Int J Radiat Oncol Biol Phys 1990;19:389–99
  • Graham SJ, Chen L, Leitch M, Peters RD, Bronskill MJ, Foster FS, et al. Quantifying tissue damage due to focused ultrasound heating observed by MRI. Magnet Reson Med 1999;41:321–8
  • Christensen DA. Thermal dosimetry and temperature measurements. Cancer Res 1979;39:2325–7
  • Pisani LJ, Ross AB, Diederich CJ, Nau WH, Sommer FG, Glover GH, et al. Effects of spatial and temporal resolution for MR image-guided thermal ablation of prostate with transurethral ultrasound. J Magn Reson Imaging 2005;22:109–18
  • Chopra R, Wachsmuth J, Burtnyk M, Haider MA, Bronskill MJ. Analysis of factors important for transurethral ultrasound prostate heating using MR temperature feedback. Phys Med Biol 2006;51:827–44
  • Lin WL, Roemer RB, Hynynen K. Theoretical and experimental evaluation of a temperature controller for scanned focused ultrasound hyperthermia. Med Phys 1990;17:615–25
  • Saccomandi P, Schena E, Silvestri S. Techniques for temperature monitoring during laser-induced thermotherapy: An overview. Int J Hyperthermia 2013;29:609–19
  • Hynynen K, Edwards DK. Temperature measurements during ultrasound hyperthermia. Med Phys 1989;16:618–26
  • Morris H, Rivens I, Shaw A, ter Haar G. Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field. Phys Med Biol 2008;53:4759–76
  • Davidson SRH, Vitkin IA, Sherar MD, Whelan WM. Characterization of measurement artefacts in fluoroptic temperature sensors: Implications for laser thermal therapy at 810 nm. Laser Surg Med 2005;36:297–306
  • Rieke V, Pauly KB. MR thermometry. J Magn Reson Imaging 2008;27:376–90
  • de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CTW. MR thermometry for monitoring tumor ablation. Eur Radiol 2007;17:2401–10
  • Quesson B, de Zwart JA, Moonen CTW. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000;12:525–33
  • Kuroda K. Non-invasive MR thermography using the water proton chemical shift. Int J Hyperthermia 2005;21:547–60
  • Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34:814–23
  • De Poorter J, De Wagter C, De Deene Y, Thomsen C, Stahlberg F, Achten E. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: In vivo results in human muscle. Magn Reson Med 1995;33:74–81
  • Corbett RJ, Laptook AR, Tollefsbol G, Kim B. Validation of a noninvasive method to measure brain temperature in vivo using 1H NMR spectroscopy. J Neurochem 1995;64:1224–30
  • Peters RD, Hinks RS, Henkelman RM. Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magnet Reson Med 1998;40:454–9
  • Baron P, Ries M, Deckers R, de Greef M, Tanttu J, Kohler M, et al. In vivo T2-based MR thermometry in adipose tissue layers for high-intensity focused ultrasound near-field monitoring. Magn Reson Med 2014;72:1057–64
  • Todd N, Diakite M, Payne A, Parker DL. In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments. Magn Reson Med 2014;72:793–9
  • Rieke V, Instrella R, Rosenberg J, Grissom W, Werner B, Martin E, et al. Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain. J Magn Reson Imaging 2013;38:1462–71
  • Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K. Referenceless PRF shift thermometry. Magn Reson Med 2004;51:1223–31
  • Bradley WG Jr. MR-guided focused ultrasound: A potentially disruptive technology. J Am Coll Radiol 2009;6:510–13
  • Schlesinger D, Benedict S, Diederich C, Gedroyc W, Klibanov A, Larner J. MR-guided focused ultrasound surgery, present and future. Med Phys 2013;40:080901
  • Yin L, Gudur MSR, Hsiao YS, Kumon RE, Deng CX, Jiang HB. Tomographic reconstruction of tissue properties and temperature increase for high-intensity focused ultrasound applications. Ultrasound Med Biol 2013;39:1760–70
  • Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: Involvement of cavitation. Ultrasound Med Biol 2005;31:947–56
  • Bamber JC, Hill CR. Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med Biol 1979;5:149–57
  • Smith MC, Beyer RT. Ultrasonic absorption in water in the temperature range 0–80 °C. J Acoust Soc Am 1948;20:608–10
  • Damianou CA, Sanghvi NT, Fry FJ, Maass-Moreno R. Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose. J Acoust Soc Am 1997;102:628–34
  • Techavipoo U, Varghese T, Chen Q, Stiles TA, Zagzebski JA, Frank GR. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses. J Acoust Soc Am 2004;115:2859–65
  • Techavipoo U, Varghese T, Zagzebski JA, Stiles T, Frank G. Temperature dependence of ultrasonic propagation speed and attenuation in canine tissue. Ultrason Imaging 2002;24:246–60
  • Lemor RM, Hoss M, Peter L, Weiss EC, Tretbar SH, Cappius HJ, et al., eds. Three dimensional ultrasonic monitoring of interstitial thermal tumor therapies: In vivo results. Ultrasonics Symposium, 2003 Proceedings, IEEE 2003;2:1284–7
  • Bevan PD, Sherar MD. B-scan ultrasound imaging of thermal coagulation in bovine liver: frequency shift attenuation mapping. Ultrasound Med Biol 2001;27:809–17
  • Bevan PD, Sherar MD. B-scan ultrasound imaging of thermal coagulation in bovine liver: log envelope slope attenuation mapping. Ultrasound Med Biol 2001;27:379–87
  • Li T, Khokhlova TD, Sapozhnikov OA, O’Donnell M, Hwang JH. A new active cavitation mapping technique for pulsed HIFU applications – Bubble Doppler. IEEE Trans Ultrason Ferroelectr Freq Control 2014;61:1698–708
  • Liberman A, Wu Z, Barback CV, Viveros RD, Wang J, Ellies LG, et al. Hollow iron-silica nanoshells for enhanced high intensity focused ultrasound. J Surg Res 2014;190:391–8
  • Andrioli M, Valcavi R. Ultrasound B-flow imaging in the evaluation of thermal ablation of thyroid nodules. Endocrine 2014. Doi:10.1007/s12020-014-0302-2
  • Ueno S, Hashimoto M, Fukukita H, Yano T, eds. Ultrasound thermometry in hyperthermia. Ultrasonics Symposium, 1990 Proceedings, IEEE 1990;3:1645–52
  • van Dongen KWA, Verweij MD. A feasibility study for non-invasive thermometry using non-linear ultrasound. Int J Hyperthermia 2011;27:612–24
  • Bazan I, Vazquez M, Ramos A, Vera A, Leija L. A performance analysis of echographic ultrasonic techniques for non-invasive temperature estimation in hyperthermia range using phantoms with scatterers. Ultrasonics 2009;49:358–76
  • Shaw A. Prediction of temperature rise in layered media from measured ultrasonic intensity data. Phys Med Biol 1994;39:1203–18
  • Chun-Yen L, Kruse DE, Ferrara KW, Caskey CF. Creation and characterization of an ultrasound and CT phantom for noninvasive ultrasound thermometry calibration. IEEE Trans Biomed Eng 2014;61:502–12
  • Chen D, Fan T, Zhang D, Wu J. A feasibility study of temperature rise measurement in a tissue phantom as an alternative way for characterization of the therapeutic high intensity focused ultrasonic field. Ultrasonics 2009;49:733–42
  • Rabkin BA, Zderic V, Crum LA, Vaezy S. Biological and physical mechanisms of HIFU-induced hyperecho in ultrasound images. Ultrasound Med Biol 2006;32:1721–9
  • Jeong JS, Chang JH, Shung KK. Pulse compression technique for simultaneous HIFU surgery and ultrasonic imaging: A preliminary study. Ultrasonics 2012;52:730–9
  • Song JH, Yoo Y, Song TK, Chang JH. Real-time monitoring of HIFU treatment using pulse inversion. Phys Med Biol 2013;58:5333–50
  • Mast TD, Salgaonkar VA, Karunakaran C, Besse JA, Datta S, Holland CK. Acoustic emissions during 3.1 MHz ultrasound bulk ablation in vitro. Ultrasound Med Biol 2008;34:1434–48
  • Ge HY, Miao LY, Wang JR, Xiong LL, Yan F, Zheng CS, et al. Correlation between ultrasound reflection intensity and tumor ablation ratio of late-stage pancreatic carcinoma in HIFU therapy: Dynamic observation on ultrasound reflection intensity. Sci World J 2013;852874:1–10
  • Wu F, Wang ZB, Chen WZ, Zou JZ, Bai J, Zhu H, et al. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: Early Chinese clinical experience. Ultrasound Med Biol 2004;30:245–60
  • Alvarenga AV, Teixeira CA, Ruano MG, Pereira WCA. Influence of temperature variations on the entropy and correlation of the Grey-Level Co-occurrence Matrix from B-mode images. Ultrasonics 2010;50:290–3
  • Alvarenga AV, Teixeira CA, Ruano MG, Pereira WCA. Evaluation of the influence of large temperature variations on the Grey level content of B-Mode images. Phys Proc 2010;3:415–19
  • Teixeira CA, Alvarenga AV, Cortela G, von Kruger MA, Pereira WC. Feasibility of non-invasive temperature estimation by the assessment of the average Gray-level content of B-mode images. Ultrasonics 2014;54:1692–702
  • Mohana Shankar P. A general statistical model for ultrasonic backscattering from tissues. IEEE Trans Ultrason Ferroelectr Freq Control 2000;47:727–36
  • Shankar PM. Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Trans Ultrason Ferroelectr Freq Control 2001;48:1716–20
  • Tsui PH, Hsu CW, Ho MC, Chen YS, Lin JJ, Chang CC, et al. Three-dimensional ultrasonic Nakagami imaging for tissue characterization. Phys Med Biol 2010;55:5849–66
  • Zhang SY, Zhou FY, Wan MX, Wei M, Fu QY, Wang X, et al. Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions. J Acoust Soc Am 2012;131:4836–44
  • Zhang S, Li C, Zhou F, Wan M, Wang S. Enhanced lesion-to-bubble ratio on ultrasonic Nakagami imaging for monitoring of high-intensity focused ultrasound. J Ultrasound Med 2014;33:959–70
  • Shankar PM. Ultrasonic tissue characterization using a generalized Nakagami model. Med Phys 2013;48:401716–20
  • Tsui PH, Shu YC, Chen WS, Liu HL, Hsiao IT, Chien YT. Ultrasound temperature estimation based on probability variation of backscatter data. Med Phys 2012;39:2369–85
  • Rangraz P, Behnam H, Tavakkoli J. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue. Proc Inst Mech Eng H 2014;228:19–26
  • Seo CH, Shi Y, Huang SW, Kim K, O’Donnell M. Thermal strain imaging: A review. Interface Focus 2011;1:649–64
  • Maass-Moreno R, Damianou CA. Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model. J Acoust Soc Am 1996;100:2514–21
  • Simon C, VanBaren P, Ebbini ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 1998;45:1088–99
  • Maass-Moreno R, Damianou CA, Sanghvi NT. Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study. J Acoust Soc Am 1996;100:2522–30
  • Souchon R, Bouchoux G, Maciejko E, Lafon C, Cathignol D, Bertrand M, et al. Monitoring the formation of thermal lesions with heat-induced echo-strain imaging: A feasibility study. Ultrasound Med Biol 2005;31:251–9
  • Seip R, Ebbini ES. Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound. IEEE Trans Biomed Eng 1995;42:828–39
  • Ebbini ES, Simon C. Temperature imaging using diagnostic ultrasound: Methods for guidance and monitoring of thermal treatments of tissue. Proc Soc Photo-Opt Ins 1999;3594:150–8
  • Liu D, Ebbini ES. Real-time two-dimensional temperature imaging using ultrasound. Engineering in Medicine and Biology Society, 2009 EMBC 2009 Annual International Conference of the IEEE; 2009 3–6 Sept. 2009
  • Liu D, Ebbini ES. Real-time 2-D temperature imaging using ultrasound. IEEE Trans Biomed Eng 2010;57:12–16
  • Casper A, Liu D, Ebbini ES. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography. IEEE Trans Biomed Eng 2012;59:95–105
  • Casper AJ, Liu D, Ballard JR, Ebbini ES. Real-time implementation of a dual-mode ultrasound array system: In vivo results. IEEE Trans Biomed Eng 2013;60:2751–9
  • Lai CY, Kruse DE, Caskey CF, Stephens DN, Sutcliffe PL, Ferrara KW. Noninvasive thermometry assisted by a dual-function ultrasound transducer for mild hyperthermia. IEEE Trans Ultrason Ferroelectr Freq Control 2010;57:2671–84
  • Ye G, Smith PP, Noble JA. Model-based ultrasound temperature visualization during and following HIFU exposure. Ultrasound Med Biol 2010;36:234–49
  • Abolhassani MD, Norouzy A, Takavar A, Ghanaati H. Noninvasive temperature estimation using sonographic digital images. J Ultras Med 2007;26:215–22
  • Mehrabani BM, Tavakoli V, Abolhassani MD, Alirezaie J, Ahmadian A. An efficient temperature estimation using optical-flow in ultrasound B-mode digital images. IEEE Eng Med Bio 2008;2008:86–9
  • Abolhassani MD, Tavakoli V, Sahba N. Optimized noninvasive monitoring of thermal changes on digital B-mode renal sonography during revascularization therapy. J Ultrasound Med 2009;28:1535–47
  • Chenot J, Melodelima D, N’Djin WA, Souchon R, Rivoire M, Chapelon JY. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: First in vivo results. Phys Med Biol 2010;55:3131–44
  • Miller NR, Bamber JC, Meaney PM. Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation. Ultrasound Med Biol 2002;28:1319–33
  • Miller NR, Bograchev KM, Bamber JC. Ultrasonic temperature imaging for guiding focused ultrasound surgery: Effect of angle between imaging beam and therapy beam. Ultrasound Med Biol 2005;31:401–13
  • Civale J, Rivens I, Ter Haar G, Morris H, Coussios C, Friend P, et al. Calibration of ultrasound backscatter temperature imaging for high-intensity focused ultrasound treatment planning. Ultrasound Med Biol 2013;39:1596–612
  • Varghese T, Zagzebski JA, Chen Q, Techavipoo U, Frank G, Johnson C, et al. Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary in-vivo results. Ultrasound Med Biol 2002;28:321–9
  • Daniels MJ, Varghese T, Madsen EL, Zagzebski JA. Non-invasive ultrasound-based temperature imaging for monitoring radiofrequency heating – Phantom results. Phys Med Biol 2007;52:4827–43
  • Miller NR, Bamber JC, ter Haar GR. Imaging of temperature-induced echo strain: Preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery. Ultrasound Med Biol 2004;30:345–56
  • Anand A, Savery D, Hall C. Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 2007;54:23–31
  • Huang SW, Kim K, Witte RS, Olafsson R, O’Donnell M. Inducing and imaging thermal strain using a single ultrasound linear array. IEEE Trans Ultrason Ferroelectr Freq Control 2007;54:1718–20
  • Mahmoud AM, Ding X, Dutta D, Singh VP, Kim K. Detecting hepatic steatosis using ultrasound-induced thermal strain imaging: an ex vivo animal study. Phys Med Biol 2014;59:881–95
  • Pouch AM, Cary TW, Schultz SM, Sehgal CM. In vivo noninvasive temperature measurement by B-mode ultrasound imaging. J Ultrasound Med 2010;29:1595–606
  • Daoud MI, Mousavi P, Imani F, Rohling R, Abolmaesumi P. Tissue classification using ultrasound-induced variations in acoustic backscattering features. IEEE Trans Biomed Eng 2013;60:310–20
  • Liu HL, Huang SM, Li ML. High frame rate ultrasound monitoring of high intensity focused ultrasound-induced temperature changes: A novel asynchronous approach. Med Phys 2010;37:5921–8
  • Liu HL, Li ML, Tsui PH, Lin MS, Huang SM, Bai J. A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy. Phys Med Biol 2011;56:169–86
  • Amini AN, Ebbini ES, Georgiou TT. Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques. IEEE Trans Biomed Eng 2005;52:221–8
  • Amini AN, Ebbini ES, Georgiou TT, eds. Noninvasive tissue temperature estimation via state-covariance spectral estimation. IEEE 11th Digital Signal Processing Workshop, 2004 and the 3rd IEEE Signal Processing Education Workshop, 2004, 1–4 August 2004, pp. 342–6
  • Liu HL, Li ML, Shih TC, Huang SM, Lu IY, Lin DY, et al. Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy. Ultrasound Med Biol 2009;35:1647–61
  • Ju KC, Liu HL. Zero-crossing tracking technique for noninvasive ultrasonic temperature estimation. J Ultrasound Med 2010;29:1607–15
  • Huang CW, Lien DH, Chen BT, Shieh J, Tsui PH, Chen CS, et al. Ultrasound thermal mapping based on a hybrid method combining cross-correlation and zero-crossing tracking. J Acoust Soc Am 2013;134:1530–40
  • Xia R, Thittai AK. Real-time monitoring of high-intensity focused ultrasound treatment using axial strain and axial-shear strain elastograms. Ultrasound Med Biol 2014;40:485–95
  • Teixeira CA, Ruano MG, Ruano AE, Pereira WC. Neuro-genetic non-invasive temperature estimation: intensity and spatial prediction. Artif Intell Med 2008;43:127–39
  • Teixeira CA, Ruano MG, Ruano AE, Pereira WCA. A soft-computing methodology for noninvasive time-spatial temperature estimation. IEEE Trans Biomed Eng 2008;55:572–80
  • Teixeira CA, Pereira WC, Ruano AE, Ruano MG. On the possibility of non-invasive multilayer temperature estimation using soft-computing methods. Ultrasonics 2010;50:32–43
  • Anand A, Byrd L, Kaczkowski PJ, editors. In situ thermal parameter estimation for HIFU therapy planning and treatment monitoring. IEEE 2004 Ultrasonics Symposium, 23–27 August 2004;1:137–40
  • Srinivasan S, Righetti R, Ophir J. Trade-offs between the axial resolution and the signal-to-noise ratio in elastography. Ultrasound Med Biol 2003;29:847–66
  • Shah J, Aglyamov SR, Sokolov K, Milner TE, Emelianov SY. Ultrasound imaging to monitor photothermal therapy – Feasibility study. Opt Express 2008;16:3776–85
  • Sapin-de Brosses E, Gennisson JL, Pernot M, Fink M, Tanter M. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound. Phys Med Biol 2010;55:1701–18
  • Sapin-de Brosses E, Pernot M, Tanter M. The link between tissue elasticity and thermal dose in vivo. Phys Med Biol 2011;56:7755–65
  • Kiss MZ, Daniels MJ, Varghese T. Investigation of temperature-dependent viscoelastic properties of thermal lesions in ex vivo animal liver tissue. J Biomech 2009;42:959–66
  • Shahmirzadi D, Hou GY, Chen J, Konofagou EE. Ex vivo characterization of canine liver tissue viscoelasticity after high-intensity focused ultrasound ablation. Ultrasound Med Biol 2014;40:341–50
  • Righetti R, Kallel F, Stafford RJ, Price RE, Krouskop TA, Hazle JD, et al. Elastographic characterization of HIFU-induced lesions in canine livers. Ultrasound Med Biol 1999;25:1099–113
  • Kallel F, Stafford RJ, Price RE, Righetti R, Ophir J, Hazle JD. The feasibility of elastographic visualization of HIFU-induced thermal lesions in soft tissues. Ultrasound Med Biol 1999;25:641–7
  • Stafford RJ, Kallel F, Price RE, Cromeens DM, Krouskop TA, Hazle JD, et al. Elastographic imaging of thermal lesions in soft tissue: A preliminary study in vitro. Ultrasound Med Biol 1998;24:1449–58
  • Sumi C, Ichiki Y, Kanai H, eds. Monitoring of the effectiveness of the interstitial RF electromagnetic wave thermal therapy by shear modulus reconstruction. IEEE 2000 Ultrasonics Symposium, 22–25 October 2000;2:1841–4
  • Bharat S, Techavipoo U, Kiss MZ, Liu W, Varghese T. Monitoring stiffness changes in lesions after radiofrequency ablation at different temperatures and durations of ablation. Ultrasound Med Biol 2005;31:415–22
  • Gennisson JL, Deffieux T, Fink M, Tanter M. Ultrasound elastography: Principles and techniques. Diagn Interv Imaging 2013;94:487–95
  • Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012;36:757–74
  • Bercoff J, Tanter M, Fink M. Supersonic shear imaging: A new technique for soft tissue elasticity mapping. IEEE Trans ultrason Ferroelectr freq control 2004;51:396–409
  • Bercoff J, Pernot M, Tanter M, Fink M. Monitoring thermally-induced lesions with supersonic shear imaging. Ultrason Imaging 2004;26:71–84
  • Mariani A, Kwiecinski W, Pernot M, Balvay D, Tanter M, Clement O, et al. Real time shear waves elastography monitoring of thermal ablation: In vivo evaluation in pig livers. J Surg Res 2014;188:37–43
  • Arnal B, Pernot M, Tanter M. Monitoring of thermal therapy based on shear modulus changes: I. Shear wave thermometry. IEEE Trans Ultrason Ferroelectr Freq Control 2011;58:369–78
  • Benech N, Negreira CA. Monitoring heat-induced changes in soft tissues with 1D transient elastography. Phys Med Biol 2010;55:1753–65
  • Benech N, Negreira C, Catheline S, eds. Monitoring local temperature changes in soft tissues by time-reversal elastography. IEEE International Ultrasonics Symposium, 20–23 September 2009, pp. 2414–17
  • Walker WF, Trahey GE. A fundamental limit on delay estimation using partially correlated speckle signals. IEEE Trans Ultrason Ferroelectr Freq Control 1995;42:301–8
  • Konofagou EE, Hynynen K. Localized harmonic motion imaging: Theory, simulations and experiments. Ultrasound Med Biol 2003;29:1405–13
  • Curiel L, Huang Y, Vykhodtseva N, Hynynen K. Focused ultrasound treatment of VX2 tumors controlled by local harmonic motion. Phys Med Biol 2009;54:3405–19
  • Curiel L, Chopra R, Hynynen K. In vivo monitoring of focused ultrasound surgery using local harmonic motion. Ultrasound Med Biol 2009;35:65–78
  • Curiel L, Hynynen K. Localized harmonic motion imaging for focused ultrasound surgery targeting. Ultrasound Med Biol 2011;37:1230–9
  • Maleke C, Konofagou EE. An all-ultrasound-based system for real-time monitoring and sonication of temperature change and ablation. Conf Proc IEEE Eng Med Biol Soc 2006;1:164–7
  • Maleke C, Konofagou EE. Harmonic motion imaging for focused ultrasound (HMIFU): A fully integrated technique for sonication and monitoring of thermal ablation in tissues. Phys Med Biol 2008;53:1773–93
  • Maleke C, Konofagou EE. In vivo feasibility of real-time monitoring of focused ultrasound surgery (FUS) using harmonic motion imaging (HMI). IEEE Trans Biomed Eng 2010;57:7–11
  • Hou G, Provost J, Grondin J, Wang S, Marquet F, Bunting E, et al. Sparse matrix beamforming and image reconstruction for real-time 2D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation. IEEE Trans Med Imaging 2014;33:2107–13
  • Konofagou EE, Maleke C, Vappou J. Harmonic motion imaging (HMI) for tumor imaging and treatment monitoring. Curr Med Imaging Rev 2012;8:16–26
  • Fatemi M, Greenleaf JF. Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission. Proc Natl Acad Sci USA. 1999;96:6603–8
  • Konofagou E, Thierman J, Hynynen K. A focused ultrasound method for simultaneous diagnostic and therapeutic applications – A simulation study. Phys Med Biol 2001;46:2967–84
  • Konofagou EE, Thierman J, Karjalainen T, Hynynen K. The temperature dependence of ultrasound-stimulated acoustic emission. Ultrasound Med Biol 2002;28:331–8
  • Straube WL, Arthur RM. Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry. Ultrasound Med Biol 1994;20:915–22
  • Trobaugh JW, Arthur RM, Straube WL, Moros EG. A simulation model for ultrasonic temperature imaging using change in backscattered energy. Ultrasound Med Biol 2008;34:289–98
  • Arthur RM, Straube WL, Starman JD, Moros EG. Noninvasive temperature estimation based on the energy of backscattered ultrasound. Med Phys 2003;30:1021–9
  • Arthur RM, Trobaugh JW, Straube WL, Moros EG. Temperature dependence of ultrasonic backscattered energy in motion-compensated images. IEEE Trans Ultrason Ferroelectr Freq Control 2005;52:1644–52
  • Arthur RM, Basu D, Yuzheng G, Trobaugh JW, Moros EG. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy. IEEE TransUltrason Ferroelectr Freq Control 2010;57:1724–33
  • Arthur RM, Straube WL, Trobaugh JW, Moros EG. In vivo change in ultrasonic backscattered energy with temperature in motion-compensated images. Int J Hyperther 2008;24:389–98
  • Li X, Ghoshal G, Lavarello RJ, Oelze ML. Exploring potential mechanisms responsible for observed changes of ultrasonic backscattered energy with temperature variations. Med Phys 2014;41:052901
  • Tsui PH, Chien YT, Liu HL, Shu YC, Chen WS. Using ultrasound CBE imaging without echo shift compensation for temperature estimation. Ultrasonics 2012;52:925–35
  • Seo J, Kim S, Kim Y, Bang W, Choi K, Kong D. Motion compensation for ultrasound thermal imaging using motion-mapped reference model: An in vivo mouse study. IEEE TransBiomedical Engineering 2014;61:2669–78
  • Ghoshal G, Luchies AC, Blue JP, Oelze ML. Temperature dependent ultrasonic characterization of biological media. J Acoust Soc Am 2011;130:2203–11
  • Ghoshal G, Kemmerer JP, Karunakaran C, Abuhabsah R, Miller RJ, Sarwate S, et al. Quantitative ultrasound imaging for monitoring in situ high-intensity focused ultrasound exposure. Ultrason Imaging 2014;36:239–55
  • Sadeghi-Naini A, Papanicolau N, Falou O, Tadayyon H, Lee J, Zubovits J, et al. Low-frequency quantitative ultrasound imaging of cell death in vivo. Med Phys 2013;40:082901
  • Subramanian S, Rudich SM, Alqadah A, Karunakaran CP, Rao MB, Mast TD. In vivo thermal ablation monitoring using ultrasound echo decorrelation imaging. Ultrasound Med Biology 2014;40:102–14
  • Mast TD, Pucke DP, Subramanian SE, Bowlus WJ, Rudich SM, Buell JF. Ultrasound monitoring of in vitro radio frequency ablation by echo decorrelation imaging. J Ultrasound Med 2008;27:1685–97
  • Sachs TD, Janney CD. A two-beam acoustic system for tissue analysis. Phys Med Biol 1977;22:327–40
  • Clement GT, Hynynen K. Ultrasound phase-contrast transmission imaging of localized thermal variation and the identification of fat/tissue boundaries. Phys Med Biol 2005;50:1585–600
  • Farny CH, Clement GT. Ultrasound phase contrast thermal imaging with reflex transmission imaging methods in tissue phantoms. Ultrasound Med Biol 2009;35:1995–2006
  • Malyarenko EV, Heyman JS, Chen-Mayer HH, Tosh RE. High-resolution ultrasonic thermometer for radiation dosimetry. J Acoust Soc Am 2008;124:3481–90
  • Le Floch C, Tanter M, Fink M. Self-defocusing in ultrasonic hyperthermia: Experiment and simulation. Appl Phys Lett 1999;74:3062–4
  • Pernot M, Tanter M, Bercoff J, Waters KR, Fink M. Temperature estimation using ultrasonic spatial compound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2004;51:606–15
  • Norton SJ, Testardi LR, Wadley HNG. Reconstructing internal temperature distributions from ultrasonic time-of-flight tomography and dimensional resonance measurements. J Res Nat Bur Stand 1984;89:65–74
  • Norton SJ, Wadley HNG. Tomographic reconstruction of internal temperature. In: Thompson D, Chimenti D, eds. Review of Progress in Quantitative Nondestructive Evaluation. New York: Springer, 1985, pp. 309–18
  • Wadley HNG, Norton SJ, Mauer F, Droney B. Ultrasonic Measurement of Internal Temperature Distribution. Philos Trans R Soc A 1986;320(1554):341–61
  • Basarab-Horwath I, Dorozhevets MM, eds. Measurement of the temperature distribution in fluids using ultrasonic tomography. IEEE Proc Ultrason Symp 1994;3:1891–4
  • Duric N, Boyd N, Littrup P, Sak M, Myc L, Li CP, et al. Breast density measurements with ultrasound tomography: A comparison with film and digital mammography. Med Phys 2013;40:013501
  • Duric N, Littrup P, Li CP, Roy O, Schmidt S, Cheng XY, et al. Breast imaging with SoftVue: Initial clinical evaluation. Proc SPIE Med Imaging 2014: Ultrasonic Imaging and Tomography 2014;9040
  • Andre M, Wiskin J, Borup D, Johnson S, Ojeda-Fournier H, Olson L. Quantitative volumetric breast imaging with 3D inverse scatter computed tomography. Conf Proc IEEE Eng Med Biol 2012;2012:1110–13
  • Wiskin J, Borup D, Andre M, Johnson S, Greenleaf J, Parisky Y, et al. Three-dimensional nonlinear inverse scattering: Quantitative transmission algorithms, refraction corrected reflection, scanner design, and clinical results. J Acoust Soc Am 2013;133:3229
  • Wiskin J, Borup D, Johnson S, Berggren M, Robinson D, Smith J, et al. Inverse scattering and refraction corrected reflection for breast cancer imaging. Proc SPIE 2010;3:7629
  • Wiskin J, Borup DT, Johnson SA, Berggren M. Non-linear inverse scattering: High resolution quantitative breast tissue tomography. J Acoust Soc Am 2012;131:3802–13
  • Nebeker J, Nelson TR. Imaging of sound speed using reflection ultrasound tomography. J Ultrasound Med 2012;31:1389–404
  • Natterer F. Ultrasound mammography with a mirror. Phys Med Biol 2010;55:N275–9
  • Natterer F. Reflectors in wave equation imaging. Wave Motion 2008;45:776–84
  • Zhu N, Jiang Y, Kato S. Ultrasonic computerized tomography (CT) for temperature measurements with limited projection data based on extrapolated filtered back projection (FBP) method. Energy 2005;30:509–22
  • Hua SY, Ding MY, Ming YC. Sparse-View Ultrasound diffraction tomography using compressed sensing with nonuniform FFT. Comput Math Method Med 2014;2014, Article ID 329350
  • Salgaonkar VA, Datta S, Holland CK, Mast TD. Passive cavitation imaging with ultrasound arrays. J Acoust Soc Am 2009;126:3071–83
  • Haworth KJ, Mast TD, Radhakrishnan K, Burgess MT, Kopechek JA, Huang SL, et al. Passive imaging with pulsed ultrasound insonations. J Acoust Soc Am 2012;132:544–53
  • Gyongy M, Coussios CC. Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Trans Biomed Eng 2010;57:48–56
  • Gyongy M, Coussios CC. Passive cavitation mapping for localization and tracking of bubble dynamics. J Acoust Soc Am 2010;128:E175–80
  • Jensen CR, Ritchie RW, Gyongy M, Collin JRT, Leslie T, Coussios CC. Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping. Radiology 2012;262:252–61
  • Gyongy M, Coviello CM. Passive cavitation mapping with temporal sparsity constraint. J Acoust Soc Am 2011;130:3489–97
  • Coviello CM, Faragher SR, Coussios CC. Robust Capon beamforming for passive cavitation mapping during high-intensity focused ultrasound therapy. J Acoust Soc Am 2010;128:2280
  • Coviello C, Choi J, Collin J, Carlisle R, Gyongy M, Coussios CC. Passive acoustic mapping of stable and inertial cavitation during ultrasound therapy. J Acoust Soc Am 2014;136:2300
  • Coviello C, Kozick RJ, Choi JJ, Gyöngy M, Collin J, Jensen C, et al. Passive acoustic mapping using optimal beamforming for real-time monitoring of ultrasound therapy. Proc Meetings Acoust 2013;19:075024
  • Collin J, Coviello C, Lyka E, Leslie T, Coussios CC. Real-time three-dimensional passive cavitation detection for clinical high intensity focused ultrasound systems. J Acoust Soc Am 2013;133:3263
  • Anand A, Kaczkowski PJ. Noninvasive Determination of in situ heating rate using kHz acoustic emissions and focused ultrasound. Ultrasound Med Biol 2009;35:1662–71
  • Jensen CR, Cleveland RO, Coussios CC. Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach. Phys Med Biol 2013;58:5833–50
  • Arvanitis CD, McDannold N. Integrated ultrasound and magnetic resonance imaging for simultaneous temperature and cavitation monitoring during focused ultrasound therapies. Med Phys 2013;40:112901
  • Faragher S, Gyöngy M, Hodnett M, Shaw A, Coussios CC. Development of a tomographic cavitation sensor for quality assessment of clinical high intensity focused ultrasound systems. J Acoust Soc Am 2009;125:2742
  • Jones RM, O’Reilly MA, Hynynen K. Passive mapping of acoustic sources within the human skull cavity with a hemispherical sparse array using computed tomography-based aberration corrections. J Acoust Soc Am 2014;135:2208–9
  • O’Reilly MA, Rahman S, Hynynen K. Cavitation monitoring and passive beamforming using a hemispherical random sparse array. AIP Conf Proc 2012;1481:271–5
  • Jones R, O’Reilly M, Hynynen K. Simulations of transcranial passive acoustic mapping with hemispherical sparse arrays using computed tomography-based aberration corrections. Proc Meeting Acoust 2013;19:1pBAb6(Abstr)
  • Pearce JA, Valvano JW, Emelianov S. Temperature Measurements. In: Welch AJ, van Gemert MJC, eds. Optical-Thermal Response of Laser-Irradiated Tissue. New York: Springer, 2011, pp. 399–453
  • Shah J, Park S, Aglyamov S, Larson T, Ma L, Sokolov K, et al. Photoacoustic imaging and temperature measurement for photothermal cancer therapy. J Biomed Opt 2008;13:034024
  • Pramanik M, Wang LV. Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 2009;14:054024
  • Ke H, Tai S, Wang LV. Photoacoustic thermography of tissue. J Biomed Opt 2014;19:026003
  • Daoudi K, van Es P, Manohar S, Steenbergen W. Two-dimensional spatiotemporal monitoring of temperature in photothermal therapy using hybrid photoacoustic-ultrasound transmission tomography. J Biomed Opt 2013;18:116009
  • Chitnis PV, Brecht HP, Su R, Oraevsky AA. Feasibility of optoacoustic visualization of high-intensity focused ultrasound-induced thermal lesions in live tissue. J Biomed Opt 2010;15:021313
  • Alhamami M, Kolios MC, Tavakkoli J. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Med Phys 2014;41:053502
  • Lai PX, McLaughlan JR, Draudt AB, Murray TW, Cleveland RO, Roy RA. Monitoring and guidance of high intensity focused ultrasound exposures in real time using acousto-optic imaging: Feasibility and demonstration ex vivo. Proc SPIE 2010;7564:75642B
  • Islam N, Hale R, Taylor M, Wilson A. The possible use of combined electrical impedance and ultrasound velocity measurements for the non-invasive measurement of temperature during mild hyperthermia. Physiol Meas 2013;34:1103–22
  • Chen BT, Shieh J, Huang CW, Chen WS, Chen SR, Chen CS. Ultrasound thermal mapping based on a hybrid method combining physical and statistical models. Ultrasound Med Biol 2014;40:115–29
  • Azhari H. Feasibility study of ultrasonic computed tomography-guided high-intensity focused ultrasound. Ultrasound Med Biol 2012;38:619–625

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.