5
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Possible involvement of ubiquitin function and ATP requirement in the development of thermotolerance in mammalian cells

, , &
Pages 33-46 | Received 01 Jul 1988, Accepted 28 Mar 1989, Published online: 09 Jul 2009

References

  • Arkinson B. G., Walden D. B. Changes in Eukaryotic Gene Expression in Response to Environmental Stress. Academic Press, London 1985
  • Bond U., Schlesinger M. L. Ubiquitin is a heat shock protein in chicken embryo fibroblasts. Molecular and Cellular Biology 1985; 5: 949–956
  • Bond U., Schlesinger M. L. The chicken ubiquitin gene contains a heat shock promoter and express an unstable mRNA in heat-shocked cells. Molecular and Cellular Biology 1986; 12: 4601–4610
  • Bond U., Agell N., Hass A. L., Redman K., Schlesinger M. J. Ubiquitin in stressed chicken embryo fibroblests. Journal of Biological Chemistry 1988; 263: 2384–2388
  • Boon-Niermeijer E. K., Tuyl M., van de Scheur H. Evidence for two states of thermotolerance. International Journal of Hyperthermia 1986; 2: 93–105
  • Carlson N., Rogers S., Rechsteiner M. Microinjection of ubiquitin: changes in protein degradation in HeLa cells subjected to heat-shock. Journal of Cell Biology 1987; 104: 547–555
  • Carlson N., Rechsteiner M. Microinjection of ubiquitin: intracellular distribution and metabolism in HeLa cells maintained under normal physiological conditions. Journal of Cell Biology 1987; 104: 537–546
  • Ciechanover A., Heller H., Elias S., Haas A. L., Hershko A. ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation. Proceedings of the National Academy of Sciences, U.S.A. 1980; 77: 1365–1368
  • Ciechanover A., Finley D., Varshavsky A. Ubiquitin dependence of selective protein degradation in the mammalian cell cycle mutant ts85. Cell 1984; 37: 57–66
  • Finley D., Ciechanover A., Varshavsky A. Thermolability of ubiquitin-activating enzyme from mammalian cell cycle mutant ts85. Cell 1984; 37: 43–55
  • Finley D., Ozkaynak E., Varshavsky A. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 1987; 48: 1035–1046
  • Gerweck L. E., Dahlberg W. K., Epstein L. F., Shimm D. S. Influence of nutrient and energy depravation on cellular response to single fractioned heat treatments. Radiation Research 1984; 99: 573–581
  • Haveman J., Hahn G. M. The role of energy in hypeithermia-induced mammalian cell inactivation; a study of the effects of glucose starvation and an uncoupler of oxidative phosphorylation. Journal of Cellular Physiology 1981; 197: 237–241
  • Haveman J., Li G. C., Max J. Y., Kipp J. B. A. Chemically induced resistance to heat treatment and stress protein synthesis in cultured mammalian cells. International Journal of Radiation Biology 1986; 50: 51–64
  • Henle K. J. Thermotolerance in cultured mammalian cells. Thermotolerance Thermotolerance and Thermophily, K. J. Henle. CRC Press, Boca Raton 1987; Vol. I: 13–17
  • Henle K. J., Nagle W. A., Moss A. J., Herman T. S. Cellular ATP control of heated Chinese hamster ovary cells. Radiation Research 1984; 97: 630–633
  • Hershko A., Eytan E., Ciechanorer A., Haas A. L. Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. Journal of Biological Chemistry 1982; 257: 13964–13970
  • Landry J. Heat shock proteins and cell thermotolerance. Hyperthermia in Cancer Treatment, L. J. Anghileri, J. Robert. CRC Press, Boca Raton 1986; Vol. I: 37–58
  • Landry J., Chretien P. Relationship between hyperthermia induced heat shock proteins and thermotolerance in Morris hepatoma cells. Canadian Journal of Biochemistry and Cell Biology 1983; 61: 428–437
  • Laszlo A. Evidence of two states of thermotolerance in mammalian cells. International Journal of Hyperthermia 1988; 4: 513–526
  • Laval F., Michel S. Enhancement of hyperthermia-induced cytotoxicicity upon ATP deprivation. Cancer Letters 1982; 15: 61–65
  • Li G. C. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and ethanol. Journal of Cellular Physiology 1983; 122: 91–97
  • Li G. C. Elevated levels of 70,000 heat shock protein in transiently thermotolerant Chinese hamster fibrodlasts and in their stable heat resistant varients. International Journal of Radiation Oncology, Biology and Physics 1985; 11: 165–177
  • Li G. C., Laszlo A. Thermotolerance in mammalian cells: a possible role for heat shock proteins. Changes in Eukaryotic Gene Expression in Response to Environmental Stress, B. G. Atkinson, D. B. Walden. Academic Press, New York 1985; 227–254
  • Lindquist S. The heat shock response. Annual Reviews of Biochemistry 1986; 55: 1151–1191
  • Matsumoto Y., Yasuda H., Marunouchi T., Yamada M. Decrease in uH2A (protein A24) of a mouse temperature-sensitive mutant. FEBS Letters 1983; 151: 139–142
  • Mita S., Yasuda H., Marunouchi T., Ishiko S., Yamada M. A temperature-sensitive mutant of cultured mouse cells defective in chromosomal condensation. Experimental Cell Research 1980; 126: 407–416
  • Mizuno S., Ohkawara A., Suzuki K. Defect in the development of thermotolerance in the mouse temperature-sensitive mutant ts85 lacking ubiquitin-activating enzyme. Japanesse Journal of Cancer Research, (Gann) 1988; 79: 17–20
  • Mizuno S., Ohkawara A., Suzuki K. Defect in the development of thermotolerance and enhanced heat shock protein synthesis in the mouse temperature-sensitive mutant ts85 cells upon moderate hyperthermia. International Journal of Hyperthermia 1989; 5: 105–113
  • Parag H., Raboy B., Kulka R. G. Effect of heat shock on protein degradation in mammalian cells: involvement of the ubiquitin system. EMBO Journal 1987; 6: 55–61
  • Pryzybytkowski E., Bates J. H. T., Bates D. A., Mackillop W. J. Thermal adaptation in CHO cells at 40°C: The influence of growth conditions and the role of heat shock proteins. Radiation Research 1986; 107: 317–331
  • Raboy B., Parag H. A., Kulka R. G. Conjugation of [125I] ubiquitin to cellular proteins in permeabilized mammalian cells: comparison of mitotic and interphase cells. EMBO Journal 1986; 5: 863–869
  • Rechsteiner M. Ubiquitin-mediated pathway for intracellular proteolysis. Annual Reviews of Cell Biology 1987; 3: 1–30
  • Schlesinger M. J. Heat shock proteins; the search for functions. Journal of Cell Biology 1986; 103: 321–325
  • Shinohara K., Kawakami N., Kugotani M., Nakano H. Gallium citrate, a new sensitizer of cells to hyperthermia. Japanese Journal of Cancer Research (Gann) 1988; 79: 21–23
  • Tanaka K., Yoshioka A S., Tanaka S., Wataya Y. An improved method for the quantitative determination of deoxyribonucleoside triphosphates in cell extract. Analytical Biochemistry 1984; 139: 35–41
  • Tomasovic S. P., Steck P. A., Heitzman D. Heat-stress proteins and thermal resistance in rat mammary tumor cells. Radiation Research 1983; 95: 399–413
  • Tsai Y-J., Hanaoka F., Nakano M. M., Yasmada M. A mammalian DNA—mutant decreasing nuclear DNA polymerase α activity at nonpermissive temperature. Biochemical and Biophysical Research Communications 1979; 91: 1190–1195
  • Watson K., Dunlop G., Cavicchiou R. R. Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast. FEBS Letters 1984; 172: 299–302
  • Widelitz R. B., Magun B. E., Gerner E. W. Effects of cycloheximide on thermotolerance expression, heat shock protein synthesis and heat shock protein mRNA accumulation in rat fibroblasts. Molecular and Cellular Biology 1986; 6: 1088–1094
  • Yasuda H., Matsumoto Y., Mita S., Marunouchi T., Yamada M. A mouse temperature-sensitive mutant defective in HI histone phosphorylation is defective in deoxyribonucleic acid synthesis and chromosome condensation. Biochemistry 1981; 20: 4414–4419
  • Yasumitsu H., Hanaoka F., Yasuda H., Murakami Y., Enomoto T., Yamada M. Isolation and initial characterization of a temperature-sensitive mutant of mouse FM3A cells defective in cytokinesis. Cell Structure and Function 1985; 10: 79–88

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.