5
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Thermal dose and secondary tumour cell death

&
Pages 755-761 | Received 04 Jan 1993, Accepted 07 Mar 1993, Published online: 09 Jul 2009

References

  • Emami B., Song C. W. Physiological mechanisms in hyperthermia: a review. International Journal of Radiation Oncology, Biology and Physics 1984; 10: 289–295
  • Falk P. Patterns of vasculature in two pairs of related fibrosarcomas in the rat and their relation to tumour responses to single large doses of radiation. European Journal of Cancer 1978; 14: 237–250
  • Fajardo L. F., Schreiber A. B., Kelly N. I., Hahn G. M. Thermal sensitivity of endothelial cells. Radiation Research 1985; 103: 276–285
  • Field S. B., Raaphorst G. P. Thermal dose. An Introduction to the Practical Aspects of Clinical Hyperthermia, S. B. Field, J. W. Hand. Taylor & Francis, London 1990; 69–76
  • Frasher W. G., Wayland H. A repeating modular organization of the microcirculation of cat mesentery. Microvascular Research 1972; 4: 62–76
  • Gibbs F. A. Externally induced hyperthermia. Innovations in Radiation Oncology, H. R. Withers, L. J. Peters. Springer-Verlag, Berlin 1988; 291–301
  • Hill S. A., Smith K. A., Denekamp J. Reduced thermal sensitivity of the vasculature in a slowly growing tumour. International Journal of Hyperthermia 1989; 5: 359–370
  • Hori K., Suzuki M., Tanda S., Saito S. Characterization of heterogeneous distribution of tumor blood flow in the rat. Japanese Journal of Cancer Research 1991; 82: 109–117
  • Jain R. K. Determinants of tumor blood flow: a review. Cancer Research 1988; 48: 2641–2658
  • Kang M. S., Song C. W., Levitt S. H. Role of vascular function in response of tumors in vivo to hyperthermia. Cancer Research 1980; 40: 1130–1135
  • Less J. R., Skalak T. C., Sevick E. M., Jain R. K. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Research 1991; 51: 265–273
  • Lindegaard J. C. Thermosensitization induced by step-down heating. International Journal of Hyperthermia 1992; 8: 561–586
  • Lindegaard J. C., Overgaard J. Step-down heating in a C3H mammary carcinoma in vivo: effects of varying the time and temperature of the sensitizing treatment. International Journal of Hyperthermia 1990; 6: 607–617
  • Lyng H., Monge O. R., Bøhler P. J., Rofstad E. K. Relationships between thermal dose and heat-induced tissue and vascular damage after thermoradiotherapy of locally advanced breast carcinoma. International Journal of Hyperthermia 1991; 7: 403–415
  • Marmor J. B., Hahn N., Hahn G. M. Tumor cure and cell survival after localized radiofrequency heating. Cancer Research 1977; 37: 879–883
  • Nishimura Y., Shibamoto Y., Jo S., Akuta K., Hiraoka M., Takahashi M., Abe M. Relationship between heat-induced vascular damage and thermosensitivity in four mouse tumors. Cancer Research 1988; 48: 7226–7230
  • Overgaard J., Nielsen O. S. The importance of thermotolerance for the clinical treatment with hyperthermia. Radiotherapy and Oncology 1983; 1: 167–178
  • Reinhold H. S., Endrich B. Tumour microcirculation as a target for hyperthermia. International Journal of Hyperthermia 1986; 2: 111–137
  • Reinhold H. S., Zurcher C., Van den Berg-Blok A. E. Differential heat sensitivity of tumour microvasculature. European Journal of Cancer 1990; 26: 541–543
  • Rofstad E. K. Heterogeneity in vascular architecture and heat-induced vascular damage of human melanoma xenograft lines established from different lesions in the same patient. International Journal of Radiation Biology 1991; 60: 183–187
  • Rofstad E. K., Brustad T. Primary and secondary cell death in human melanoma xenografts following hyperthermic treatment. Cancer Research 1986; 46: 355–361
  • Rubin P., Casarett G. Microcirculation of tumors. Part I: Anatomy, function, and necrosis. Clinical Radiology 1966; 17: 220–229
  • Sapareto S. A. Thermal isoeffect dose: addressing the problem of thermotolerance. International Journal of Hyperthermia 1987; 3: 297–305
  • Sapareto S. A., Dewey W. C. Thermal dose determination in cancer therapy. International Journal of Radiation Oncology, Biology and Physics 1984; 10: 787–800
  • Skalak T. C., Schmid-Schönbein G. W. The microvasculature in skeletal muscle. IV. A model of the capillary network. Microvascular Research 1986; 32: 333–347
  • Song C. W., Kang M. S., Rhee J. G., Levitt S. H. Effect of hyperthermia on vascular function in normal and neoplastic tissues. Annals of the New York Academy of Sciences 1980; 335: 37–47
  • Van den Berg-blok A. E., Reinhold H. S. Time-temperature relationship for hyperthermia induced stoppage of the microcirculation in tumors. International Journal of Radiation Oncology, Biology and Physics 1984; 10: 737–740
  • Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Research 1989; 49: 6449–6465

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.