55
Views
60
CrossRef citations to date
0
Altmetric
Original Article

Initial in vivo experience with EIT as a thermal estimator during hyperthermia

, , , &
Pages 573-591 | Received 12 Dec 1995, Accepted 10 May 1996, Published online: 09 Jul 2009

References

  • Astrahan M. A. Thermal mapping with multisensor probes. Strahlentherapie und Onkologie 1989; 165: 746–750
  • Bardati F., Brown V. J., Tognolatti P. Two dimensional temperature retrieval in biological structures by multifrequency microwave radiometry: sobolev-space solution. ACES Special Issue on Bioelectromagnetic Computations, A. H. J. Fleming, K. H. Joyner, 1992; 7: 110–120
  • Blad B., Persson B., Lindstrom K. Quantitative assessment of impedance tomography for temperature measurements in hyperthermia. International Journal of Hyperthermia 1992; 8: 33–43
  • Clegg S. T., Roemer R. B. Reconstruction of experimental hyperthermia temperature distributions: application of state and parameter estimation. ASME Journal of Biomechanical Engineering 1993; 215: 380–388
  • Dewhirst M. W., Phillips T. L., Samulski T. V., Stauffer P., Shrivastava P., Paliwal B., Pajak T., Gillim M., Sapozink M., Myerson R., Waterman F. M., Saparato S. A., Corry P., Cetas T. C., Leeper D. B., Fessenden P., Kapp D., Oleson J. R., Emami D. RTOG quality assurance guidelines for clinical trials using hyperthermia. International Journal of Radiation Oncology, Biology and Physics 1990; 18: 1249–1259
  • Dissado L. A., Alison J. M., Hill R. M., McRae D. A., Esrick M. A. Dynamic scaling in the electrical response of excised EMT-6 tumors undergoing hyperthermia. Physics in Medicine and Biology 1995; 40: 1067–1084
  • Dubois L., Pribetich J., Fabre J., Chive M., Moschetto Y. Non-invasive microwave multifrequency radiometry used in microwave hyperthermia for two-dimensional reconstruction of temperature patterns. International Journal of Hyperthermia 1993; 9: 415–43
  • Esrick M. A., McRae D. A. The effect of hyperthermia-induced tissue conductivity changes on electrical impedance temperature mapping. Physics in Medicine and Biology 1994; 39: 133–144
  • Gibbs F. A. Thermal mapping in experimental cancer treatment with hyperthermia: description and use of a semi-automatic system. International Journal of Radiation Oncology, Biology and Physics 1983; 9: 1057–1063
  • Hamamura Y., Mizushina S., Sugiura T. Noninvasive measurement of temperature-versus-depth profile in biological systems using a multi-frequency-band microwave radiometer system. Automedica 1987; 8: 213–232
  • Isaacson D. Distinguishabilities of conductivities by electric current computed tomography. IEEE Transactions on Medical Imaging 1986; 5: 91–95
  • Jofre L., Hawley M. S., Broquetas A., de los Reyes E., Ferrando M., Elias-Fuste A. R. Medical imaging with a microwave tomographic scanner. IEEE Transactions on Biomedical Engineering 1990; 37: 303–312
  • Leopold K. A., Dewhirst M. W., Samulski T. V., Dodge R. K., George S. L., Blivin J. L., Prosnitz L. R., Oleson J. R. Cumulative minutes with T90 greater than TEMPindex is predictive of response of superficial malignancies to hyperthermia and radiation. International Journal of Radiation Oncology, Biology and Physics 1993; 25: 841–847
  • Leroy Y., Mamouni A., Van de Velde J. C., Bocquet B., Dujardin B. Microwave radiometry for noninvasive thermometry. Automedia 1987; 8: 181–202
  • Liaugh C. T., Roemer R. B. A semilinear state and parameter estimationalgorithm for inverse hyperthermia problems. Journal of Biomedical Engineering 1993; 15: 257–261
  • MacFall J., Prescott D. M., Fullar E., Samulski T. V. Temperature dependence of canine brain tissue diffusion coefficient measured in vivo with magnetic resonance echo-planar imaging. International Journal of Hyperthermia 1995; 11: 73–86
  • McRae D. A., Esrick M. A. The dielectric parameters of excised EMT-6 tumors and their change during hyperthermia. Physics in Medicine and Biology 1992; 37: 2045–2058
  • McRae D. A., Esrick M. A. Changes in electrical impedance of skeletal muscle measured during hyperthermia. International Journal of Hyperthermia 1993; 9: 247–262
  • McRae D. A., Esrick M. A. Deconvolved electrical impedance spectra track distinct cell morphology changes. IEEE Transactions Biomedical Engineering 1996; 43: 607–618
  • Meaney P. M., Paulsen K. D., Hartov A., Crane R. K. An active microwave imaging system for reconstruction of 2D electrical property distributions. IEEE Transactions Biomedical Engineering 1996; 42: 1017–1026
  • Miyakawa M. Tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography. Medical and Biological Engineering Computation 1993; 31: 531–536
  • Moskowitz M. J., Paulsen K. D., Ryan T. P., Pang D. Temperature field estimation using electrical impedance profiling methods: II experimental system description and phantom results. International Journal of Hyperthermia 1994; 10: 229–245
  • Moskowitz M. J. Electrical impedance imaging for temperature field estimation during hyperthermia treatment of cancer. PhD Thesis, Dartmouth College, Hanover, NH 1994
  • Moskowitz M. J., Ryan T. P., Paulsen K. D., Mitchell S. E. Clinical implementation of electrical impedance tomography with hyperthermia. International Journal of Hyperthermia 1995; 11: 141–149
  • Oleson J. R., Samulski T. V., Leopold K. A., Clegg S. T., Dewhirst M. W., Dodge R. K., George S. L. Sensitivity of hyperthermia trial outcomes to temperature and time: implications for thermal goals of treatment. International Journal of Radiation Oncology, Biology and Physics 1993; 25: 289–297
  • Paulsen K. D., Moskowitz M. J., Ryan T. P. Temperature field estimation using electrical impedance profiling methods: I. reconstruction algorithm and simulated results. International Journal of Hyperthermia 1994; 10: 209–228
  • Ryan T. P., Backus V. L., Coughlin C. T. Large stationary microstrip arrays for superficial microwave hyperthermia at 433 MHz: SAR analysis and clinical data. International Journal of Hyperthermia 1995; 11: 187–210
  • Ryan T. P., Wikoff R., Hoopes P. J. An automated temperature mapping system for use in ultrasound or microwave hyperthermia. Journal of Biomedical Engineering 1991; 13: 348–354
  • Samulski T. V., MacFall J., Zhang Y., Grant W., Charles C. Noninvasive thermometry using magnetic resonance diffusion imaging: potential for application in hyperthermia oncology. International Journal of Hyperthermia 1992; 8: 819–829
  • Seagar A. D., Barber D. C., Brown B. H. Electrical impedance imaging. IEE Proceedings 1987; 134: 201–210
  • Zhang Y., Samulski T. V., Joines W. T., Matiello J., Levin R. L., Lebihan D. On the accuracy of noninvasive thermometry using molecular diffusion magnetic resonance imaging. International Journal of Hyperthermia 1992; 8: 263–274

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.