165
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Increased heating efficiency of hyperthermia using an ultrasound contrast agent: A phantom study

, , , , , , , & show all
Pages 495-502 | Received 13 Nov 1997, Accepted 14 May 1998, Published online: 09 Jul 2009

References

  • Abe M., Hiraoka M., Takahashi M., Egawa S., Matslida C., Onoyama Y., Morita K., Kakehi M., Sugawara T. Multi-institutional studies on hyperthermia using an 8-MHz radiofrequency capacitive heating device (Themotron RF-8) in combination with radiation for cancer therapy. Cancer 1986; 58: 1589–1595
  • Akuta K., Abe M., Kondo M., Yoshikawa T., Tanaka Y., Yoshida M., Miura T., Nakao N., Onoyama Y., Yamada T., Mukoujima T., Tsukada K. Combined effects of hepatic arterial embolization using degradable starch microspheres (DSM) in hyperthermia for liver cancer. International Journal of Hyperthermia 1991; 7: 231–242
  • Barnhart J., Levene H., Villapando E., Maniquis J., Fernandez J., Rice S., Jablonski E., Gjøen T., Tolleshaug H. Characteristics of Albunex: air-filled albumin microspheres for echocardiography contrast enhancement. Investigative Radiology 1990; 25: 162–164
  • Christiansen C., Kryvi H., Sontum P. C., Skotland T. Physical and biochemical characterization of Albunex™, a new ultrasound contrast agent consisting of air-filled albumin microspheres suspended in a solution of human albumin. Biotechnology and Applied Biochemistry 1994; 19: 307–320
  • Corry P. M., Jabboury K., Kong J. S., Armour E. P., McCraw F. J., Leduc T. Evaluation of equipment for hyperthermic treatment of cancer. International Journal of Hyperthermia 1988; 4: 53–74
  • Harari P. M., Hynynen K. H., Roemer R. B., Anhalt D. P., Shimm D. S., Stea B., Cassady J. R. Development of scanned focussed ultrasound hyperthermia: clinical response evaluation. International Journal of Radiation Oncology, Biology and Physics 1991; 21: 831–840
  • Hoff L., Christiansen C., Skotland T. Consideration about the contribution to acoustic backscatter from Albunex microspheres with different sizes. Journal of Ultrasound in Medicine 1994; 13: 181–182
  • Hynynen K. Hot spots created at skin-air interfaces during ultrasound hyperthermia. International Journal of Hyperthermia 1990; 6: 1005–1012
  • Hynynen K., DeYoung D. Temperature elevation at muscle-bone interface during scanned, focused ultrasound hyperthermia. International Journal of Hyperthermia 1988; 4: 267–279
  • Hynynen K., Shimm D., Anhalt D., Stea B., Sykes H., Cassady J. R., Roemer R. B. Temperature distributions during clinical scanned, focused ultrasound hyperthermia treatments. International Journal of Hyperthermia 1990; 6: 891–908
  • Mitsumori M., Hiraoka M., Okuno Y., Nishimura Y., Li Y. P., Fujishiro S., Nagata Y., Abe M., Koishi M., Sano T., Marume T., Takayama N. A phase I and II clinical trial of a newly developed ultrasound hyperthermia system with an improved planar transducer. International Journal of Radiation Oncology, Biology and Physics 1996; 36: 1169–1175
  • Nishimura Y., Akuta K., Hiraoka M., Masunaga S., Nagata Y., Takahashi M., Abe M., Koizumi K. Initial clinical results of 430 MHz microwave hyperthermia system using a lens applicator. Radiotherapy and Oncology 1990; 17: 219–227
  • Nishimura Y., Hiraoka M., Mitsumori M., Okuno Y., Li Y. P., Masunaga S., Koishi M., Akuta K., Abe M. Thermoradiotherapy of superficial and subsurface tumors: analysis of thermal parameters and tumor response. International Journal of Hyperthermia 1995; 11: 603–613
  • Okujima M., Soetanto K., Sugimoto T. A method for making microbubbles as ultrasound contrast agent by ultrasound atomizer. Japan society of ultrasonics in medicine symposium proceedings. Japan Society of Ultrasonics in Medicine, Japan 1994; 160
  • Samulski T. V., Grant W. J., Oleson J. R., Leopold K. A., Dewhirst M. W., Vallario P., Blivin J. Clinical experience with a multi-element ultrasonic hyperthermia system: analysis of treatment temperatures. International Journal of Hyperthermia 1990; 6: 909–922
  • Sano T., Takamura S., Marume T., Takayama N., Takemura K. Technology for Ultrasonic Hyperthermia. Shimadzu review 1994; 51: 107–12, (In Japanese)
  • Storm F. K., Morton D. L., Kaiser L. R., Harrison W. H., Elliott R. S., Weisenburger T. H., Parker R. G., Haskell C. M. Clinical Radiofrequency hyperthermia: A Review. National Cancer Institute Monographs 1982; 61: 343–350
  • Verma G. S. Ultrasonic classification of organic liquids. The Journal of Chemical Physics 1950; 18: 1352–1354
  • Waterman F. M., Leeper J. B. Temperature artifacts produced by thermocouples used in conjunction with 1 and 3 MHz ultrasound. International Journal of Hyperthermia 1990; 6: 383–399
  • Waterman F. M., Dewhirst M. W., Fessenden P., Samulski T. V., Stauffer P., Emami B., Corry P., Prionas S. D., Sapozink M., Herman T., Kapp D. S., Myerson R. J., Ryan T., Sapareto S. A., Shrivastava P. RTOG quality assurance guidelines for clinical trials using hyperthermia administered by ultrasound. International Journal of Radiation Oncology, Biology and Physics 1991; 20: 1099–1107
  • Watmough G. J., Lakshmi R., Ghezzi F., Quan K. M., Watmough J. A., Khizhynyak E., Pashovkin T. N., Sarvazyan A. P. The effect of gas bubbles on the production of ultrasound hyperthermia at 0.75 MHz: A phantom study. Ultrasound in Medicine and Biology 1993; 19: 231–241

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.