119
Views
2
CrossRef citations to date
0
Altmetric
Original

Intracisternal administration of glibenclamide or 5-hydroxydecanoate does not reverse the neuroprotective effect of ketogenic diet against ischemic brain injury-induced neurodegeneration

, PhD, &
Pages 1081-1088 | Received 05 Jun 2009, Accepted 17 Oct 2009, Published online: 12 Nov 2009

References

  • Bough KJ, Eagles DA. A ketogenic diet increases the resistance to pentylenetetrazole-induced seizures in the rat. Epilepsia 1999; 40: 138–143
  • Hartman AL, Gasior M, Vining EP, Rogawski MA. The neuropharmacology of the ketogenic diet. Pediatric Neurology 2007; 36: 281–292
  • Bough KJ, JM R. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 2007; 48: 43–58
  • Murphy P. Use of the ketogenic diet as a treatment for epilepsy refractory to drug treatment. Expert Reviews in Neurotherapy 2005; 5: 769–775
  • Schwartz RH, Eaton J, Bower BD, Aynsley-Green A. Ketogenic diets in the treatment of epilepsy: Short-term clinical effects. Developmental Medicine and Child Neurology 1989; 31: 145–151
  • Kossoff EH. More fat and fewer seizures: Dietary therapies for epilepsy. Lancet Neurology 2004; 3: 415–420
  • Murphy P. Use of the ketogenic diet as a long-term treatment for intractable epilepsy. Developmental Medicine and Child Neurology 2006; 48: 949
  • Tai KK, Truong DD. Ketogenic diet prevents seizure and reduces myoclonic jerks in rats with cardiac arrest-induced cerebral hypoxia. Neuroscience Letters 2007; 425: 34–38
  • Tai KK, Nguyen N, Pham L, Truong DD. Ketogenic diet prevents cardiac arrest-induced cerebral ischemic neurodegeneration. Journal of Neural Transmission 2008; 115: 1011–1017
  • Choi DW. Calcium and excitotoxic neuronal injury. Annals of the New York Academy of Sciences 1994; 747: 162–171
  • Lipton P. Ischemic cell death in brain neurons. Physiology Reviews 1999; 79: 1431–1568
  • Misgeld U, Frotscher M. Dependence of the viability of neurons in hippocampal slices on oxygen supply. Brain Research Bulletin 1982; 8: 95–100
  • Hansen AJ. Effect of anoxia on ion distribution in the brain. Physiology Reviews 1985; 65: 101–148
  • Haddad GG, Jiang C. O2 deprivation in the central nervous system: On mechanisms of neuronal response, differential sensitivity and injury. Progress in Neurobiology 1993; 40: 277–318
  • Hochachka PW. Defense strategies against hypoxia and hypothermia. Science 1986; 231: 234–241
  • Mourre C, Ben Ari Y, Bernardi H, Fosset M, Lazdunski M. Antidiabetic sulfonylureas: Localization of binding sites in the brain and effects on the hyperpolarization induced by anoxia in hippocampal slices. Brain Research 1989; 486: 159–164
  • Luhmann HJ, Heinemann U. Hypoxia-induced functional alterations in adult rat neocortex. Journal of Neurophysiology 1992; 67: 798–811
  • Kulik A, Brockhaus J, Pedarzani P, Ballanyi K. Chemical anoxia activates ATP-sensitive and blocks Ca(2+)-dependent K(+) channels in rat dorsal vagal neurons in situ. Neuroscience 2002; 110: 541–554
  • Wasada T. Adenosine triphosphate-sensitive potassium (K(ATP)) channel activity is coupled with insulin resistance in obesity and type 2 diabetes mellitus. Internal Medicine 2002; 41: 84–90
  • Lam TK, Pocai A, Gutierrez-Juarez R, Obici S, Bryan J, Aguilar-Bryan L, Schwartz GJ, Rossetti L. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nature Medicine 2005; 11: 320–327
  • Shumilina E, Klocker N, Korniychuk G, Rapedius M, Lang F, Baukrowitz T. Cytoplasmic accumulation of long-chain coenzyme A esters activates KATP and inhibits Kir2.1 channels. Journal of Physiology 2006; 575: 433–442
  • Yamada K, Ji JJ, Yuan H, Miki T, Sato S, Horimoto N, Shimizu T, Seino S, Inagaki N. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 2001; 292: 1543–1546
  • Ma W, Berg J, Yellen G. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels. Journal of Neuroscience 2007; 27: 3618–3625
  • Bough KJ, Valiyil R, Han FT, Eagles DA. Seizure resistance is dependent upon age and calorie restriction in rats fed a ketogenic diet. Epilepsy Research 1999; 35: 21–28
  • Cheng CM, Kelley B, Wang J, Strauss D, Eagles DA, Bondy CA. A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology 2003; 144: 2676–2682
  • Cheng CM, Hicks K, Wang J, Eagles DA, Bondy CA. Caloric restriction augments brain glutamic acid decarboxylase-65 and -67 expression. Journal of Neuroscience Research 2004; 77: 270–276
  • Van der Auwera I, Wera S, Van Leuven F, Henderson ST. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer's disease. Nutrition and Metabolism (London) 2005; 2: 28
  • Tache Y, Vale W, Rivier J, Brown M. Brain regulation of gastric secretion: Influence of neuropeptides. Proceedings of the National Academy of Sciences(USA) 1980; 77: 5515–5519
  • Tache Y, Vale W, Rivier J, Brown M. Brain regulation of gastric acid secretion in rats by neurogastrointestinal peptides. Peptides 1981; 2(Suppl 2): 51–55
  • Proescholdt MG, Hutto B, Brady LS, Herkenham M. Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat. Neuroscience 2000; 95: 577–592
  • Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ. Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels. Cell 2004; 118: 687–698
  • Tai KK, Truong DD. NMDA receptor-mediated excitotoxicity contributes to the cerebral hypoxic injury of a rat model of posthypoxic myoclonus. Brain Research 2007; 1133: 209–215
  • Jovanovic N, Jovanovic S, Jovanovic A, Terzic A. Gene delivery of Kir6.2/SUR2A in conjunction with pinacidil handles intracellular Ca2+ homeostasis under metabolic stress. Faseb Journal 1999; 13: 923–929
  • Heron-Milhavet L, Xue-Jun Y, Vannucci SJ, Wood TL, Willing LB, Stannard B, Hernandez-Sanchez C, Mobbs C, Virsolvy A, LeRoith D. Protection against hypoxic-ischemic injury in transgenic mice overexpressing Kir6.2 channel pore in forebrain. Molecular and Cellular Neuroscience 2004; 25: 585–593
  • Vamecq J, Vallee L, Lesage F, Gressens P, Stables JP. Antiepileptic popular ketogenic diet: Emerging twists in an ancient story. Progress in Neurobiology 2005; 75: 1–28
  • Ballanyi K, Kulik A. Intracellular Ca2+ during metabolic activation of KATP channels in spontaneously active dorsal vagal neurons in medullary slices. European Journal of Neuroscience 1998; 10: 2574–2585
  • Puchowicz MA, Zechel JL, Valerio J, Emancipator DS, Xu K, Pundik S, LaManna JC, Lust WD. Neuroprotection in diet-induced ketotic rat brain after focal ischemia. Journal of Cerebral Blood Flow Metabolism 2008; 28: 1907–1916

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.