814
Views
59
CrossRef citations to date
0
Altmetric
Review

Brain–computer interfacing in disorders of consciousness

, , , , &
Pages 1510-1522 | Received 01 Dec 2011, Accepted 23 May 2012, Published online: 03 Jul 2012

References

  • Cruse D, Owen AM. Consciousness revealed: New insights into the vegetative and minimally conscious states. Curr Opin Neurol 2010; 23: 656–660
  • Monti MM, Laureys S, Owen AM. The vegetative state. BMJ 2010; 341: c3765
  • Laureys S, Celesia GG, Cohadon F, Lavrijsen J, Leon-Carrion J, Sannita WG, Sazbon L, Schmutzhard E, von Wild KR, Zeman A, et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med 2010; 8: 68
  • Schnakers C, Vanhaudenhuyse A, Giacino J, Ventura M, Boly M, Majerus S, Moonen G, Laureys S. Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 2009; 9: 35
  • Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science 2006; 313: 1402
  • Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, Pickard JD, Tshibanda L, Owen AM, Laureys S. Willful modulation of brain activity in disorders of consciousness. N Engl J Med 2010; 362: 579–589
  • Kübler A, Brain-computer interfaces for communication in paralysed patients and implications for disorders of consciousness. In: Laureys S, Tononi G, editors. The Neurology of Consciousness. Academic Press – Elsevier; 2009. p. 217–234
  • Mason SG, Birch GE. A general framework for brain-computer interface design. IEEE Trans Neural Syst Rehabil Eng 2003; 11: 70–85
  • Kubler A, Neumann N. Brain-computer intrerfaces - the key for the conscious brain locked into a paralyzed body. Prog Brain Res 2005; 150: 513–525
  • Farwell LA, Donchin E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 1988; 70: 510–523
  • Ingvar DH, Philipson L. Distribution of cerebral blood flow in the dominant hemisphere during motor ideation and motor performance. Ann Neurol 1977; 2: 230–237
  • Pfurtscheller G, Neuper C, Krausz G. Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin Neurophysiol 2000; 111: 1873–1879
  • Kubler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G, McFarland DJ, Birbaumer N, Wolpaw JR. Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 2005; 64: 1775–1777
  • Regan D. Steady-state evoked potentials. Journal of the Optical Society of America 1977; 67: 1475–1489
  • Cheng M, Gao X, Gao S, Xu D. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 2002; 49: 1181–1186
  • Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kubler A, Perelmouter J, Taub E, Flor H. A spelling device for the paralysed. Nature 1999; 398: 297–298
  • Kubler A, Kotchoubey B, Hinterberger T, Ghanayim N, Perelmouter J, Schauer M, Fritsch C, Taub E, Birbaumer N. The thought translation device: A neurophysiological approach to communication in total motor paralysis. Exp Brain Res 1999; 124: 223–232
  • Walter WG, Cooper R, Aldridge VJ, McCallum WC, Winter AL. Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature 1964; 203: 380–384
  • Sutton S, Braren M, Zubin J, John ER. Evoked-potential correlates of stimulus uncertainty. Science 1965; 150: 1187–1188
  • Donchin E, Smith DB. The contingent negative variation and the late positive wave of the average evoked potential. Electroencephalogr Clin Neurophysiol 1970; 29: 201–203
  • Fabiani M, Gratton G, Karis D, Donchin E, Definition, identification and reliability of the p300 component of the event-related brain potential. In: Ackles P, Jennings J, Coles M. editors. Advances in psychophysiology. 2nd ed. New York: JAI Press; 1987. p. 1–78
  • Squires KC, Donchin E, Herning RI, McCarthy G. On the influence of task relevance and stimulus probability on event-related-potential components. Electroencephalogr in Clin Neurophysiol 1977; 42: 1–14
  • Donchin E, Spencer KM, Wijesinghe R. The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng 2000; 8: 174–179
  • Martens SM, Hill NJ, Farquhar J, Scholkopf B. Overlap and refractory effects in a brain-computer interface speller based on the visual P300 event-related potential. J Neural Eng 2009; 6: 026003
  • Salvaris M, Sepulveda F. Visual modifications on the P300 speller BCI paradigm. J Neural Eng 2009; 6: 046011
  • Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW. A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clin Neurophysiol 2010; 121: 1109–1120
  • Lenhardt A, Kaper M, Ritter HJ. An adaptive P300-based online brain-computer interface. IEEE Trans Neural Sys Rehabil Eng 2008; 16: 121–130
  • Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR. Toward enhanced P300 speller performance. J Neurosci Methods 2008; 167: 15–21
  • Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G. How many people are able to control a P300-based brain-computer interface (BCI)?. Neurosci Lett 2009; 462: 94–98
  • Birbaumer N, Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 2006;43:517–532
  • Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kubler A. An auditory brain-computer interface (BCI). J Neurosci Methods 2008; 167: 43–50
  • Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Mochty U, Krusienski DJ, Vaughan TM, et al. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 2008; 119: 1909–1916
  • Finke A, Lenhardt A, Ritter H. The MindGame: A P300-based brain-computer interface game. Neural Network 2009; 22: 1329–1333
  • Citi L, Poli R, Cinel C, Sepulveda F. P300-based BCI mouse with genetically-optimized analogue control. IEEE Trans Neural Syst Rehabil Eng 2008; 16(1)51–61
  • Bayliss JD, Ballard DH. A virtual reality testbed for brain–computer interface research. IEEE Trans Rehabil Eng 2000; 8: 188–190
  • Coleman MR, Davis MH, Rodd JM, Robson A, Owen AM, Pickard JD. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain 2009; 132: 2541–2552
  • Fernandez-Espejo D, Junque C, Vendrell P, Bernabeu M, Roig T, Bargallo N, Mercader JM. Cerebral response to speech in vegetative and minimally conscious states after traumatic brain injury. Brain Inj 2008; 22: 882–890
  • Davis MH, Coleman MR, Absalom AR, Rodd JM, Johnsrude IS, Matta BF, Owen AM, Menon DK. Dissociating speech perception and comprehension at reduced levels of awareness. Proceedings of the National Academy of Sciences USA 2007; 104: 16032–16037
  • Di HB, Yu SM, Weng XC, Laureys S, Yu D, Li JQ, Qin PM, Zhu YH, Zhang SZ, Chen YZ. Cerebral response to patient's own name in the vegetative and minimally conscious states. Neurology 2007; 68: 895–899
  • Qin P, Di H, Liu Y, Yu S, Gong Q, Duncan N, Weng X, Laureys S, Northoff G. Anterior cingulate activity and the self in disorders of consciousness. Hum Brain Mapp 2010; 31: 1993–2002
  • Staffen W, Kronbichler M, Aichhorn M, Mair A, Ladurner G. Selective brain activity in response to one's own name in the persistent vegetative state. J Neurol Neurosurg Psychiatry 2006; 77: 1383–1384
  • Qin P, Di H, Yan X, Yu S, Yu D, Laureys S, Weng X. Mismatch negativity to the patient's own name in chronic disorders of consciousness. Neurosci Lett 2008; 448: 24–28
  • Schnakers C, Perrin F, Schabus M, Majerus S, Ledoux D, Damas P, Boly M, Vanhaudenhuyse A, Bruno MA, Moonen G, et al. Voluntary brain processing in disorders of consciousness. Neurology 2008; 71: 1614–1620
  • Schnakers C, Perrin F, Schabus M, Hustinx R, Majerus S, Moonen G, Boly M, Vanhaudenhuyse A, Bruno MA, Laureys S. Detecting consciousness in a total locked-in syndrome: An active event-related paradigm. Neurocase 2009; 4: 1–7
  • Monti MM, Coleman MR, Owen AM. Executive functions in the absence of behavior: Functional imaging of the minimally conscious state. Prog Brain Res 2009; 177: 249–260
  • Hill NJ, Lal TN, Bierig K, Birbaumer N, Scholkopf BN, An auditory paradigm for brain-computer interfaces, in Advances in Neural Information Processing Systems. In: Saul LK, Weiss Y, Bottou L. editors. Cambridge, MA, USA: MIT Press; 2005. p. 569–576
  • Sellers EW, Donchin E. A P300-based brain-computer interface: Initial tests by ALS patients. Clin Neurophysiol 2006; 117: 538–548
  • Schreuder M, Blankertz B, Tangermann M. A new auditory multi-class brain-computer interface paradigm: Spatial hearing as an informative cue. PLoS One 2010; 5: e9813
  • Halder S, Rea M, Andreoni R, Nijboer F, Hammer EM, Kleih SC, Birbaumer N, Kubler A. An auditory oddball brain-computer interface for binary choices. Clin Neurophysiol 2010; 121: 516–523
  • Klobassa DS, Vaughan TM, Brunner P, Schwartz NE, Wolpaw JR, Neuper C, Sellers EW. Toward a high-throughput auditory P300-based brain-computer interface. Clin Neurophysiol 2009; 120: 1252–1261
  • Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N, Kubler A. An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 2009; 46: 617–625
  • Kubler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B. A brain-computer interface controlled auditory event-related potential (p300) spelling system for locked-in patients. Annals of the New York Academy of Science 2009; 1157: 90–100
  • Kanoh S, Miyamoto K, Yoshinobu T. A brain-computer interface (BCI) system based on auditory stream segregation. Conference Proceedings of the IEEE Engineering in Medicine and Biology Society 2008; 2008: 642–645
  • Brouwer AM, van Erp JB. A tactile p300 brain-computer interface. Front Neurosci 2010;4:19
  • Bianchi L, Sami S, Hillebrand A, Fawcett IP, Quitadamo LR, Seri S. Which physiological components are more suitable for visual ERP based brain-computer interface? A preliminary MEG/EEG study. Brain Topogr 2010; 23: 180–185
  • Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C, Pfurtscheller G, Babiloni F. Human movement-related potentials vs desynchronization of EEG alpha rhythm: A high-resolution EEG study. Neuroimage 1999; 10: 658–665
  • Wolpaw JR, McFarland DJ, Neat GW, Forneris CA. An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 1991; 78: 252–259
  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol 2002; 113: 767–791
  • Niedermeyer E, Goldszmidt A, Ryan D. “Mu rhythm status” and clinical correlates. Clin EEG Neurosci 2004; 35: 84–87
  • Chatrian GE, Petersen MC, Lazarte JA. The blocking of the rolandic wicket rhythm and some central changes related to movement. Electroencephalogr Clin Neurophysiol 1959; 11: 497–510
  • Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysiol 1999; 110: 1842–1857
  • Pfurtscheller G, Aranibar A. Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 1979; 46: 138–146
  • Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M. EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 1997; 103: 642–651
  • Jeannerod M. Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage 2001; 14: S103–S109
  • Neuper C, Scherer R, Reiner M, Pfurtscheller G. Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res Cogn Brain Res 2005; 25: 668–677
  • Neuper C, Muller-Putz GR, Scherer R, Pfurtscheller G. Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog Brain Res 2006; 159: 393–409
  • Guger C, Edlinger G, Harkam W, Niedermayer I, Pfurtscheller G. How many people are able to operate an EEG-based brain-computer interface (BCI)? Neural Systems and Rehabilitation Engineering. IEEE Transactions on 2003; 11: 145–147
  • Kotchoubey B, Lang S, Winter S, Birbaumer N. Cognitive processing in completely paralyzed patients with amyotrophic lateral sclerosis. Eur J Neurol 2003; 10: 551–558
  • Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N. Think to move: A neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 2008; 39: 910–917
  • Millan Jdel R, Mourino J. Asynchronous BCI and local neural classifiers: An overview of the Adaptive Brain Interface project. IEEE Trans Neural Syst Rehabil Eng 2003; 11: 159–161
  • Scherer R, Muller GR, Neuper C, Graimann B, Pfurtscheller G. An asynchronously controlled EEG-based virtual keyboard: Improvement of the spelling rate. IEEE Trans Biomed Eng 2004; 51: 979–984
  • Neuper C, Muller GR, Kubler A, Birbaumer N, Pfurtscheller G. Clinical application of an EEG-based brain-computer interface: A case study in a patient with severe motor impairment. Clin Neurophysiol 2003; 114: 399–409
  • Perelmouter J, Birbaumer N. A binary spelling interface with random errors. IEEE Trans Rehabil Eng 2000; 8: 227–232
  • Pfurtscheller G, Brunner C, Schlogl A, Lopes da Silva FH. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 2006; 31: 153–159
  • Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Brain Res Rev 1999; 29: 169–195
  • Wolpaw JR, McFarland DJ, Vaughan TM. Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng 2000; 8: 222–226
  • Blankertz B, Tomioka R, Lemm S, Kawanabe M, Muller K. Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine 2008; 25: 41
  • Bekinschtein TA, Coleman MR, Niklison J, Pickard JD, Manes FF. Can electromyography objectively detect voluntary movement in Disorders of Consciousness?. Journal of Neurology, Neurosurgery & Psychiatry 2007; 79: 826–828
  • Goldfine AM, Victor JD, Conte MM, Bardin JC, Schiff ND. Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin Neurophysiol 2011; 122: 2157–2168
  • Cruse D, Chennu S, Chatelle C, Bekinschtein T, Fernández-Espejo D, Junqué C, Pickard J, Laureys S, Owen A. Bedside detection of awareness in the vegetative state. The Lancet 2011; 378: 2088–2094
  • Cruse D, Chennu S, Chatelle C, Fernández-Espejo D, Bekinschtein T, Pickard J, Laureys S, Owen A. The relationship between aetiology and covert cognition in the minimally-conscious state. Neurology 2012; 78: 816–822
  • Cincotti F, Kauhanen L, Aloise F, Palomaki T, Caporusso N, Jylanki P, Mattia D, Babiloni F, Vanacker G, Nuttin M, Marciani MG, Del RMJ. Vibrotactile feedback for brain-computer interface operation. Comput Intell Neurosci 2007; 2007: 1–12
  • Sakurai Y, Momose T, Iwata M, Sasaki Y, Kanazawa I. Activation of prefrontal and posterior superior temporal areas in visual calculation. J Neurol Sci 1996; 139: 89–94
  • Dehaene S, The Number Sense: How the Mind Creates Mathematics. Oxford, UK: Oxford University Press; 1997
  • Rappelsberger P, Petsche H. Probability mapping: Power and coherence analyses of cognitive processes. Brain Topogr 1988; 1: 46–54
  • Curran EA, Stokes MJ. Learning to control brain activity: A review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn 2003; 51: 326–336
  • Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Prog Neurobiol 2010; 90: 418–438
  • Regan D, Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine.New York: Elsevier; 1989
  • Herrman CS. Human EEG responses to 1-100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research 2001; 137: 346–353
  • Perlstein WM, Cole MA, Larson M, Kelly K, Seignourel P, Keil A. Steady-state visual evoked potentials reveal frontally-mediated working memory activity in humans. Neurosci Lett 2003; 342: 191–195
  • Regan D. Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr Clin Neurophysiol 1966; 20: 238–248
  • Gray M, Kemp AH, Silberstein RB, Nathan PJ. Cortical neurophysiology of anticipatory anxiety: An investigation utilizing steady state probe topography (SSPT). Neuroimage 2003; 20: 975–986
  • Wang Y, Wang R, Gao X, Hong B, Gao S. A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2006; 14: 234–239
  • Middendorf M, McMillan G, Calhoun G, Jones KS. Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehabil Eng 2000; 8: 211–214
  • Muller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G. Steady-state visual evoked potential (SSVEP)-based communication: Impact of harmonic frequency components. J Neural Eng 2005; 2: 123–130
  • Parini S., Maggi L., Turconi A.C., Andreoni G. A robust and self-paced BCI system based on a four class SSVEP paradigm: Algorithms and protocols for a high-transfer-rate direct brain communication. Comput Intell Neurosci, 2009; 2009: 1–11
  • Kelly SP, Lalor EC, Reilly RB, Foxe JJ. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans Neural Syst Rehabil Eng 2005; 13: 172–178
  • Allison BZ, McFarland DJ, Schalk G, Zheng SD, Jackson MM, Wolpaw JR. Towards an independent brain-computer interface using steady state visual evoked potentials. Clin Neurophysiol 2008; 119: 399–408
  • Zhang D, Maye A, Gao X, Hong B, Engel AK, Gao S. An independent brain-computer interface using covert non-spatial visual selective attention. J Neural Eng 2010; 7: 16010
  • Müller GR, Neuper C, Pfurtscheller G. “Resonance-like” Frequencies of Sensorimotor Areas Evoked by Repetitive Tactile Stimulation. Biomedical Engineering 2001; 46: 186–190
  • Snyder AZ. Steady-state vibration evoked potentials: Descriptions of technique and characterization of responses. Electroencephalogr Clin Neurophysiol 1992; 84: 257–268
  • Tobimatsu S, Zhang YM, Kato M. Steady-state vibration somatosensory evoked potentials: Physiological characteristics and tuning function. Clin Neurophysiol 1999; 110: 1953–1958
  • Tobimatsu S, Zhang YM, Suga R, Kato M. Differential temporal coding of the vibratory sense in the hand and foot in man. Clin Neurophysiol 2000; 111: 398–404
  • Giabbiconi CM, Dancer C, Zopf R, Gruber T, Muller MM. Selective spatial attention to left or right hand flutter sensation modulates the steady-state somatosensory evoked potential. Brain Res Cogn Brain Res 2004; 20: 58–66
  • Muller-Putz GR, Scherer R, Neuper C, Pfurtscheller G. Steady-state somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces?. IEEE Trans Neural Syst Rehabil Eng 2006; 14: 30–37
  • Zhang D, Wang Y, Maye A, Engel AK, Gao X, Hong B, Gao S, editors. A Brain-Computer Interface Based on Multi-Modal Attention. 3rd International IEEE EMBS Conference on Neural Engineering. Hawaii. USA. Institute of Electrical and Electronics Engineers (IEEE); 2007. p 414–417
  • Ross B, Borgmann C, Draganova R, Roberts LE, Pantev C. A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J Acoust Soc Am 2000; 108: 679–691
  • Ross B, Picton TW, Herdman AT, Pantev C. The effect of attention on the auditory steady-state response. Neurol Clin Neurophysiol 2004; 2004: 22
  • Pastor MA, Artieda J, Arbizu J, Marti-Climent JM, Penuelas I, Masdeu JC. Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. J Neurosci 2002; 22: 10501–10506
  • Picton TW, John MS, Dimitrijevic A, Purcell D. Human auditory steady-state responses. Int J Audiol 2003; 42: 177–219
  • Birbaumer N, Slow cortical potentials: Their origin, meaning, and clinical use. in: van Boxtel GJM, K. Böcker, editors. Brain and behavior past, present, and future. ed. Tilburg: Tilburg University Press; 1997. p. 25–39
  • Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N. Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol 1980; 48: 293–301
  • Birbaumer N, Kubler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H. The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 2000; 8: 190–193
  • Pham M, Hinterberger T, Neumann N, Kubler A, Hofmayer N, Grether A, Wilhelm B, Vatine JJ, Birbaumer N. An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabil Neural Repair 2005; 19: 206–218
  • Hill NJ, Lal TN, Schroder M, Hinterberger T, Wilhelm B, Nijboer F, Mochty U, Widman G, Elger C, Scholkopf B, Kubler A, Birbaumer N. Classifying EEG and ECoG signals without subject training for fast BCI implementation: Comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans Neural Syst Rehabil Eng 2006; 14: 183–186
  • Kübler A, Mushahwar VK, Hochberg LR, Donoghue JP. BCI Meeting 2005-workshop on clinical issues and applications. IEEE Trans Neural Syst Rehabil Eng 2006; 14: 131–134
  • Demertzi A, Schnakers C, Ledoux D, Chatelle C, Bruno MA, Vanhaudenhuyse A, Boly M, Moonen G, Laureys S. Different beliefs about pain perception in the vegetative and minimally conscious states: A European survey of medical and paramedical professionals. Prog Brain Res 2009; 177: 329–338

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.