326
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury

, , , , , , , , , & show all
Pages 1497-1510 | Received 29 Dec 2014, Accepted 16 May 2015, Published online: 05 Aug 2015

References

  • Miniño AM. Death in the United States, 2009. NCHS Data Brief 2011;64:1–8
  • Luerssen TG, Klauber MR, Marshall LF. Outcome from head injury related to patient's age. A longitudinal prospective study of adult and pediatric head injury. Journal of Neurosurgery 1988;68:409–416
  • Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J. A systematic review of brain injury epidemiology in Europe. Acta Neurochirurgica (Wien) 2006;148:255–268; discussion 268
  • Kochanek PM, Bell MJ, Bayir H. Quo vadis 2010? - carpe diem: Challenges and opportunities in pediatric traumatic brain injury. Developmental Neuroscience 2010;32:335–342
  • Rovegno M, Soto PA, Saez JC, von Bernhardi R. [Biological mechanisms involved in the spread of traumatic brain damage]. Medicina Intensiva 2012;36:37–44
  • Werner C, Engelhard K. Pathophysiology of traumatic brain injury. British Journal of Anaesthesia 2007;99:4–9
  • Aboody K, Capela A, Niazi N, Stern JH, Temple S. Translating stem cell studies to the clinic for CNS repair: Current state of the art and the need for a Rosetta stone. Neuron 2011;70:597–613
  • De Feo D, Merlini A, Laterza C, Martino G. Neural stem cell transplantation in central nervous system disorders: From cell replacement to neuroprotection. Current Opinion in Neurology 2012;25:322–333
  • Jain KK. Cell therapy for CNS trauma. Molecular Biotechnology 2009;42:367–376
  • Walker PA, Harting MT, Shah SK, Day MC, El Khoury R, Savitz SI, Baumgartner J, Cox CS. Progenitor cell therapy for the treatment of central nervous system injury: A review of the state of current clinical trials. Stem Cells International 2010;2010:369578
  • Walker PA, Shah SK, Harting MT, Cox CS Jr. Progenitor cell therapies for traumatic brain injury: Barriers and opportunities in translation. Disease Models & Mechanisms 2009;2:23–38
  • Ozen I, Boix J, Paul G. Perivascular mesenchymal stem cells in the adult human brain: A future target for neuroregeneration? Clinical & Translational Medicine 2012;1:30
  • de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D'Amico G, Fagioli F, Ferrero I, et al. Mesenchymal stem/stromal cells: A new ‘'cells as drugs'' paradigm. Efficacy and critical aspects in cell therapy. Current Pharmaceutical Design 2013;19:2459–2473
  • Xiong Y, Mahmood A, Chopp M. Emerging treatments for traumatic brain injury. Expert Opinion in Emergency Drugs 2009;14:67–84
  • Xiong Y, Mahmood A, Chopp M. Neurorestorative treatments for traumatic brain injury. Discovery Medicine 2010;10:434–442
  • Gutierrez-Fernandez M, Rodriguez-Frutos B, Otero-Ortega L, Ramos-Cejudo J, Fuentes B, Diez-Tejedor E. Adipose tissue-derived stem cells in stroke treatment: From bench to bedside. Discovery Medicine 2013;16:37–43
  • Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294–1301
  • Ertas G, Ural E, Ural D, Aksoy A, Kozdag G, Gacar G, Karaoz E. Comparative analysis of apoptotic resistance of mesenchymal stem cells isolated from human bone marrow and adipose tissue. ScientificWorldJournal 2012;2012:105698
  • Ribeiro A, Laranjeira P, Mendes S, Velada I, Leite C, Andrade P, Santos F, Henriques A, Graos M, Cardoso CM, et al. Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research Therapy 2013;4:125
  • Bochev I, Elmadjian G, Kyurkchiev D, Tzvetanov L, Altankova I, Tivchev P, Kyurkchiev S. Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biology International 2008;32:384–393
  • Gutierrez-Fernandez M, Rodriguez-Frutos B, Alvarez-Grech J, Vallejo-Cremades MT, Exposito-Alcaide M, Merino J, Roda JM, Diez-Tejedor E. Functional recovery after hematic administration of allogenic mesenchymal stem cells in acute ischemic stroke in rats. Neuroscience 2011;175:394–405
  • Gutierrez-Fernandez M, Rodriguez-Frutos B, Ramos-Cejudo J, Teresa Vallejo-Cremades M, Fuentes B, Cerdan S, Diez-Tejedor E. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke. Stem Cell Research Therapy 2013;4:11
  • Xue S, Zhang HT, Zhang P, Luo J, Chen ZZ, Jang XD, Xu RX. Functional endothelial progenitor cells derived from adipose tissue show beneficial effect on cell therapy of traumatic brain injury. Neuroscience Letters 2010;473:186–191
  • Persons DA, Allay JA, Riberdy JM, Wersto RP, Donahue RE, Sorrentino BP, Nienhuis AW. Use of the green fluorescent protein as a marker to identify and track genetically modified hematopoietic cells. Nature Medicine 1998;4:1201–1205
  • Cao QL, Onifer SM, Whittemore SR. Labeling stem cells in vitro for identification of their differentiated phenotypes after grafting into the CNS. Methods in Molecular Biology 2008;438:361–374
  • Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego, CA: Academic Press Inc; 1998. p 474
  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Research 1981;211:67–77
  • Harting MT, Sloan LE, Jimenez F, Baumgartner J, Cox CS, Jr. Subacute neural stem cell therapy for traumatic brain injury. Journal of Surgical Research 2009;153:188–194
  • Hamm RJ, Pike BR, O'Dell DM, Lyeth BG, Jenkins LW. The rotarod test: An evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. Journal of Neurotrauma 1994;11:187–196
  • Rogers DC, Campbell CA, Stretton JL, Mackay KB. Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat. Stroke 1997;28:2060–2065; discussion 2066
  • Alonso de Lecinana M, Gutierrez M, Roda JM, Carceller F, Diez-Tejedor E. Effect of combined therapy with thrombolysis and citicoline in a rat model of embolic stroke. Journal of Neurological Sciences 2006;247:121–129
  • Mackay KB, Bailey SJ, King PD, Patel S, Hamilton TC, Campbell CA. Neuroprotective effect of recombinant neutrophil inhibitory factor in transient focal cerebral ischaemia in the rat. Neurodegeneration 1996;5:319–323
  • Komotar RJ, Kim GH, Sughrue ME, Otten ML, Rynkowski MA, Kellner CP, Hahn DK, Merkow MB, Garrett MC, Starke RM, et al. Neurologic assessment of somatosensory dysfunction following an experimental rodent model of cerebral ischemia. Nature Protocols 2007;2:2345–2347
  • Sughrue ME, Mocco J, Komotar RJ, Mehra A, D'Ambrosio AL, Grobelny BT, Penn DL, Connolly ES Jr. An improved test of neurological dysfunction following transient focal cerebral ischemia in rats. Journal of Neuroscience Methods 2006;151:83–89
  • Kochanek PM, Dixon CE, Shellington DK, Shin SS, Bayir H, Jackson EK, Kagan VE, Yan HQ, Swauger PV, Parks SA, et al. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats. Journal of Neurotrauma 2013;30:920–937
  • Michalczyk K, Ziman M. Nestin structure and predicted function in cellular cytoskeletal organisation. Histology & Histopathology 2005;20:665–671
  • Richardson RM, Singh A, Sun D, Fillmore HL, Dietrich DW, 3rd, Bullock MR. Stem cell biology in traumatic brain injury: Effects of injury and strategies for repair. Journal of Neurosurgery 2010;112:1125–1138
  • Richardson RM, Holloway KL, Bullock MR, Broaddus WC, Fillmore HL. Isolation of neuronal progenitor cells from the adult human neocortex. Acta Neurochirurgica (Wien) 2006;148:773–777
  • Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nature Reviews Neuroscience 2006;7:395–406
  • Mori K, Iwata J, Miyazaki M, Nakao Y, Maeda M. Functional recovery of neuronal activity in rat whisker-barrel cortex sensory pathway from freezing injury after transplantation of adult bone marrow stromal cells. Journal of Cerebral Blood Flow & Metabolism 2005;25:887–898
  • Lu D, Mahmood A, Qu C, Hong X, Kaplan D, Chopp M. Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 2007;61:596–602; discussion 602–603
  • Mahmood A, Lu D, Yi L, Chen JL, Chopp M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. Journal of Neurosurgery 2001;94:589–595
  • Bonilla C, Zurita M, Otero L, Aguayo C, Vaquero J. Delayed intralesional transplantation of bone marrow stromal cells increases endogenous neurogenesis and promotes functional recovery after severe traumatic brain injury. Brain Injury 2009;23:760–769
  • Coyne TM, Marcus AJ, Woodbury D, Black IB. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 2006;24:2483–2492
  • Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815–1822
  • Bjorklund A, Lindvall O. Cell replacement therapies for central nervous system disorders. Nature Neuroscience 2000;3:537–544
  • Brunt KR, Weisel RD, Li RK. Stem cells and regenerative medicine - future perspectives. Canadian Journal of Physiology & Pharmacology 2012;90:327–335
  • Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 2004;55:1185–1193
  • Xiong Y, Qu C, Mahmood A, Liu Z, Ning R, Li Y, Kaplan DL, Schallert T, Chopp M. Delayed transplantation of human marrow stromal cell-seeded scaffolds increases transcallosal neural fiber length, angiogenesis, and hippocampal neuronal survival and improves functional outcome after traumatic brain injury in rats. Brain Research 2009;1263:183–191
  • Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 2001;49:1196–1203; discussion 1203–1204
  • Mahmood A, Lu D, Qu C, Goussev A, Chopp M. Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. Journal of Neurosurgery 2006;104:272–277
  • Mahmood A, Lu D, Wang L, Chopp M. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. Journal of Neurotrauma 2002;19:1609–1617
  • Wang S, Cheng H, Dai G, Wang X, Hua R, Liu X, Wang P, Chen G, Yue W, An Y. Umbilical cord mesenchymal stem cell transplantation significantly improves neurological function in patients with sequelae of traumatic brain injury. Brain Research 2013;1532:76–84
  • Cox CS Jr, Baumgartner JE, Harting MT, Worth LL, Walker PA, Shah SK, Ewing-Cobbs L, Hasan KM, Day MC, Lee D, et al. Autologous bone marrow mononuclear cell therapy for severe traumatic brain injury in children. Neurosurgery 2011;68:588–600

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.