278
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

EAAT and Xc Exchanger Inhibition Depletes Glutathione in the Transformed Human Lens Epithelial Cell Line SRA 01/04

, , , &
Pages 357-366 | Received 22 Aug 2014, Accepted 04 Feb 2015, Published online: 21 Apr 2015

REFERENCES

  • Horwitz J. Proctor Lecture. The function of alpha-crystallin. Invest Ophthalmol Vis Sci 1993;34:10–22
  • Matsui H, Lin LR, Singh DP, Shinohara T, Reddy VN. Lens epithelium-derived growth factor: increased survival and decreased DNA breakage of human RPE cells induced by oxidative stress. Invest Ophthalmol Vis Sci 2001;42:2935–2941
  • Behndig A, Karlsson K, Reaume AG, Sentman ML, Marklund SL. In vitro photochemical cataract in mice lacking copper-zinc superoxide dismutase. Free Radic Biol Med 2015;31:738–744
  • Spector A, Li D, Ma W, Sun F, Pavlidis P. Differential amplification of gene expression in lens cell lines conditioned to survive peroxide stress. Invest Ophthalmol Vis Sci 2002;43:3251–3264
  • Kantorow M, Hawse JR, Cowell TL, Benhamed S, Pizarro GO, Reddy VN, Hejtmancik JF. Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress. Proc Natl Acad Sci USA 2004;101:9654–9659
  • Reddy VN. Glutathione and its functions in the lens – an overview. Exp Eye Res 1990;50:71–78
  • Ganea E, Harding JJ. Glutathione-related enzymes and the eye. Curr Eye Res 2006;31:1–11
  • Rathbun WB, Schmidt AJ, Holleschau AM. Activity loss of glutathione synthesis enzymes associated with human subcapsular cataract. Invest Ophthalmol Vis Sci 1993;34:2049–2054
  • Martensson J, Steinherz R, Jain A, Meister A. Glutathione ester prevents buthionine sulfoximine-induced cataracts and lens epithelial cell damage. Proc Natl Acad Sci USA 1989;86:8727–8731
  • Calvin HI, Medvedovsky C, David JC, Broglio TM, Hess JL, Fu SC, Worgul BV. Rapid deterioration of lens fibers in GSH-depleted mouse pups. Invest Ophthalmol Vis Sci 1991;32:1916–1924
  • Rathbun WB, Holleschau AM, Cohen JF, Nagasawa HT. Prevention of acetaminophen- and naphthalene-induced cataract and glutathione loss by CySSME. Invest Ophthalmol Vis Sci 1996;37:923–929
  • Zhao C, Shichi H. Prevention of acetaminophen-induced cataract by a combination of daily disulfide and N-acetylcysteine. J Ocul Pharmacol Ther 1998;14:345–355
  • Pau H, Graf P, Seis H. Glutathione levels in human lens: regional distribution in different forms of cataracts. Exp Eye Res 1990;50:17–20
  • Jain AK, Lim G, Langford M, Jain SK. Effect of high-glucose levels on protein oxidation in cultured lens cells, and in crystallin and albumin solution and its inhibition by vitamin B6 and N-acetylcysteine: its possible relevance to cataract formation in diabetes. Free Radical Biol Med 2002;33:1615–1621
  • Reddy VN. Distribution of free amino acids and related compounds in ocular fluids, lens, and plasma of various mammalian species. Invest Ophthalmol 1967;6:478–483
  • Chakrapani B, Yedavally S, Leverenz V, Giblin FJ, Reddy VN. Simultaneous measurement of reduced and oxidized glutathione in human AH and cataracts by electrochemical detection. Ophthalmic Res 1995;1(27 Suppl):69–77
  • Kannan R, Yi J-R, Tang D, Zlokovic BV, Kaplowitz N. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium. Invest Ophthalmol Vis Sci 1996;37:2269–2275
  • Li B, Li L, Donaldson PJ, Lim JC. Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium. Exp Eye Res 2010;90:300–307
  • Kern HL, Ho CK. Transport of L-glutamic acid and L-glutamine and their incorporation into lenticular glutathione. Exp Eye Res 1973;17:455–462
  • Jernigan HM Jr. Metabolism of glutamine and glutamate in human lenses. Exp Eye Res 1990;50:597–601
  • Meister A, Tate SS. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem 1976;45:559–604
  • Rathbun WB, Sethna SS, Skelnik DL, Bistner SI. Glutathione metabolism in lenses of dogs and rabbits: activities of five enzymes. Exp Eye Res 1983;36:845–858
  • Storck T, Schulte S, Hofmann K, Stoffel W. Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 1992;89:10955–10959
  • Pines G, Danbolt NC, Bjørås M, Zhang Y, Bendahan A, Eide L, et al. Cloning and expression of a rat brain L-glutamate transporter. Nature 1992;360:464–467
  • Kanai Y, Hediger MA. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 1992;360:467–471
  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 1995;375:599–603
  • Arriza JL, Eliasof S, Kavannaugh MP, Amara SG. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 1997;94:4155–4160
  • Kato S, Ishita S, Sugawara K, Mawatari K. Cystine/glutamate antiporter expression in retinal Müller glial cells: implications for DL-alpha-aminoadipate toxicity. Neuroscience 1993;57:473–482
  • Sato H, Tamba M, Ishii T, Bannai S. Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem 1999;274:11455–11458
  • Lim J, Lam YC, Kistler J, Donaldson PJ. Molecular characterization of the cystine/glutamate exchanger and the excitatory amino acid transporters in the rat lens. Invest Ophthalmol Vis Sci 2005;46:2869–2877
  • Lim JC, Lam L, Li B, Donaldson PJ. Molecular identification and cellular localization of a potential transport system involved in cystine/cysteine uptake in human lenses. Exp Eye Res 2013;116:219–226
  • Ochiai H, Saito M, Maruo T, Kanemaki N. Molecular cloning of canine excitatory amino acid transporter 5 and its detection in primary lens epithelial cells. Exp Anim 2010;59:449–457
  • Ibaraki N, Chen SC, Lin LR, Okamoto H, Pipas JM, Reddy VN. Human lens epithelial cell line. Exp Eye Res 1998;67:577–585
  • Miao A, Zhang X, Jiang Y, Chen Y, Fang Y, Ye H, et al. Proteomic analysis of SRA01/04 transfected with wild-type and mutant HSF4b identified from a Chinese congenital cataract family. Mol Vis 2012;18:694–704
  • Carper DA, Sun JK, Iwata T, Zigler JS Jr, Ibaraki N, Lin LR, Reddy V. Oxidative stress induces differential gene expression in a human lens epithelial cell line. Invest Ophthalmol Vis Sci 1999;40:400–406
  • Hawse JR, Cumming JR, Oppermann B, Sheets NL, Reddy VN, Kantorow M. Activation of metallothioneins and alpha-crystallin/sHSPs in human lens epithelial cells by specific metals and the metal content of aging clear human lenses. Invest Ophthalmol Vis Sci 2003;44:672–679
  • Mäenpää H, Gegelashvili G, Tähti H. Expression of glutamate transporter subtypes in cultured retinal pigment epithelial and retinoblastoma cells. Curr Eye Res 2004;28:159–165
  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG. Functional comparisons of three glutamate transporter subtypes clone from human motor cortex. J Neurosci 1994;14:5559–5569
  • Waagepetersen HS, Shimamoto K, Schousbe A. Comparison of effects of DL-threo-beta-benzyloxyaspartate (DL-TBOA) and 1-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3H]D-aspartate in astrocytes and glutamatergic neurons. Neurochem Res 2001;26:661–666
  • Tsai MJ, Chang YF, Schwarcz R, Brookes N. Characterization of L-alpha-aminoadipic acid transport in cultured rat astrocytes. Brain Res 1996;741:166–173
  • Griffith OW. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 1982; 257:13704–13712
  • Langford MP, Stanton GJ, Johnson HM. Biological effect of staphylococcal enterotoxin A on human peripheral lymphocytes. Infect Immun 1978;22:62–68
  • Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hygiene 1938;27:493–497
  • Chen D, Texada DE, Duggan C, Liang C, Reden TB, Kooragayala LM, Langford MP. Surface calreticulin mediates muramyl dipeptide-induced apoptosis in RK13 cells. J Biol Chem 2005;280:22425–22436
  • Langford MP, Gosslee JM, Misra RP, Liang C, Redens TB, Welbourne TC. Apical accumulation of glutamate in GLAST-1, glutamine synthetase positive ciliary body non-pigmented epithelial cells. Clin Ophthalmol 2007;1:43–53
  • Nadkarni VD, Linhardt RJ. Enhancement of diaminobenzidine colorimetric signal in immunoblotting. BioTechniques 1997;23:385–388
  • Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 2006;1:3159–3165
  • Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 1990;70:43–77
  • Kanner BI. Glutamate transporters from brain: a novel neurotransmitter transporter family. FEBS Lett 1993;325:95–99
  • Zerangue N, Kavanaugh MP. Interaction of L-cysteine with a human excitatory amino acid transporter. J Physiol 1996;493:419–423
  • Chen Y, Swanson RA. The glutamate transporters EAAT2 and EAAT3 mediate cysteine uptake in cortical neuron cultures. J Neurochem 2003;84:1332–1339
  • Hayes D, Wiessner M, Rauen T, McBean GJ. Transport of L-[14C]cystine and L-[14C]cysteine by subtypes of high affinity glutamate transporters over-expressed in HEK cells. Neurochem Int 2005;46:585–594
  • Watts SD, Torres-Salazar D, Divito CB, Amara SG. Cysteine transport through excitatory amino acid transporter 3 (EAAT3). PLoS One 2014;9:e109245
  • Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 2006;9:119–126
  • Berman AE, Chan WY, Brennan AM, Reyes RC, Adler BL, Suh SW, et al. A-acetylcysteine prevents loss of dopaminergic neurons in the EAAC1−/− mouse. Ann Neurol 2011;69:509–520
  • Kato S, Negishi K, Mawatari K, Kuo CH. A mechanism for glutamate toxicity in the C6 glioma cells involving inhibition of cystine uptake leading to glutathione depletion. Neuroscience 1992;48:903–914
  • Mysona B, Dun Y, Duplantier J, Ganapathy V, Smith SB. Effects of hyperglycemia and oxidative stress on the glutamate transporters GLAST and system xc-in mouse retinal Muller glial cells. Cell Tissue Res 2009;335:477–488
  • Langford MP, Redmond P, Chanis R, Misra RP, Redens TB. Glutamate, excitatory amino acid transporters, Xc− antiporter, glutamine synthetase and γ-glutamyl transpeptidase in human corneal epithelium. Curr Eye Res 2010;53:221–230
  • Langford MP, Redens TB, Texada DE. Excitatory amino acid transporters, Xc− antiporter, γ-glutamyl transpeptidase, glutamine synthetase, and glutathione in human corneal epithelial cells. In: Babizhayev MA, Li DW-C, Kasus-Jacobi A, Žorić L, Aliό JL, editors. Studies on the cornea and lens, oxidative stress in applied basic research and clinical practice. New York: Springer Science+Business Media; 2015. pp 67–82
  • Reichelt W, Stabel-Brown J, Pannicke T, Weichert H, Heinemann U. The glutathione level of retinal Müller glial cells is dependent on high-affinity sodium-dependent uptake of glutamate. Neuroscience 1997;77:1213–1224
  • Himi T, Ikeda M, Yasuhara T, Nishida M, Morita I. Role of neuronal glutamate transporter in the cysteine uptake and intracellular glutathione levels in cultured cortical neurons. J Neural Transm 2003;110:1337–1348
  • Lewerenz J, Klein M, Methner A. Cooperative action of glutamate transporters and cystine/glutamate antiporter system Xc− protects from oxidative glutamate toxicity. J Neurochem 2006;98:916–925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.