176
Views
229
CrossRef citations to date
0
Altmetric
Original Article

Oxidative stress on lens and cataract formation: role of light and oxygen

, , , &
Pages 35-58 | Published online: 02 Jul 2009

References

  • Dische Z., Borenfreund E., Zelmenis G. Changes in lens proteins of rats during aging. Arch. Ophthal. 1956; 55: 471–483
  • Clark R., Zigman S., Lerman S. Studies on the structural proteins of the human lens. Exp. Eye Res. 1969; 8: 172–182
  • Spector A., Freund T., Li L., Augusteyn R. C. Age‐dependent changes in the structure of alpha crystallin. Invest. Ophthal. & Vis. Sci. 1971; 10: 677–686
  • Jedziniak J. A., Kinoshita J. H., Yates E. M., Hocker L. O., Benedek G. B. On the presence and mechanism of formation of heavy molecular weight aggregates in human normal and cataractous lenses. Exp. Eye Res. 1973; 15: 185–192
  • Philipson B. T., Fagerholm P. P. Lens changes responsible for increased light scattering in some types of senile cataract. The Human Lens in Relation to Cataract. Ciba Foundation Symposium 19, Elsevier‐North Holland, New York 1973; 45
  • Spector A., Li S., Sigelman J. Age dependent changes in the molecular size of human lens proteins and their relationship to light scatter. Invest. Ophthal. & Vis. Sci. 1974; 13: 795–798
  • Benedek G. B. Theory of the transparency of the eye. Appl. Optics. 1971; 10: 459
  • Lerman S. Lens proteins and fluorescence. Israel J. Med. Sci. 1972; 8: 1583–1589
  • Pirie A. Photo‐oxidation of proteins and comparison of photo‐oxidized proteins with those of the cataractous human lens. Israel J. Med. Sci. 1972; 8: 1567–1573
  • Cameron L. L., Auer C. L., McCormick P. A., Owens S. L., Fine S. L., Taylor H. R. Association of sunlight with senile macular and lens changes. Invest. Ophthal. & Vis. Sci. 1983; 24: 202, ARVO suppl.
  • Varma S. D. Superoxide and lens of the eye: a new theory of cataractogenesis. Int. J. Ouantum Chem. 1981; 20: 479–484
  • Pauling L. The nature of the chemical bond. II. The one‐electron bond and the three‐electron bond. J. Am. Chem. Soc. 1931; 53: 3225
  • Pauling L. The discovery of the superoxide radical. TIBS 1979; 4: 270–271
  • McCord J. M., Fridovich I. Superoxide dismutase: An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969; 244: 6049–6055
  • Fridovich I. Superoxide dismutases. Ann. Rev. Biochem. 1975; 44: 147–159
  • Fridovich I. The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity: superoxide dismutases provide an important defense. Science 1978; 201: 875–880
  • Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mamalian organs. Physiol. Rev. 1979; 59: 527–605
  • Varma S. D., Ets T., Richards R. D. Superoxide dismutase in the lens. Invest. Ophthal. & Vis. Sci. 1977; 16: 15, ARVO suppl.
  • Varma S. D., Ets T., Richards R. D. Protection against superoxide radicals in rat lens. Ophthalmic Res. 1977; 9: 421–431
  • Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971; 44: 276–287
  • Kuck J. F., Jr. Activity of superoxide dismutase in rat lens epithelium and in fiber. Invest. Ophthal. & Vis. Sci. 1977; 16: 15, ARVO suppl.
  • Bhuyan D. K., Bhuyan K. C. Superoxide dismutase (EC 1.1 5.1.1, superoxide: superoxide oxidoreductase) of calf lens. Invest. Ophthal. & Vis. Sci. 1977; 16: 15, ARVO suppl.
  • Kinsey V. E., Frohman C. E. Studies on the crystalline lens. IV. Distribution of cytochrome, total riboflavin, lactate, and pyruvate and their metabolic significance. Arch. Ophthal. 1951; 46: 536–541
  • Philpot F. J., Pirie A. Riboflavin and riboflavin‐adenine‐denucleotide in ox ocular tissues. Biochem. J. 1943; 37: 250–254
  • Van Henyingen R. Fluorescent derivatives of 3‐hydroxy‐L‐kynurenine in lens of man, the baboon and the grey squirrel. Biochem. J. 1971; 123: 30
  • Varma S. D., Kumar S., Richards R. D. Light‐induced damage to ocular lens cation pump: prevention by vitamin C. Proc. Natl. Acad. Sci. 1979; 76: 3504–3506
  • Harris J. E., Gruber L., Talman E., Haskinson G. The influence of oxygen on the photodynamic action of methylene blue on cation transport in the rabbit lens. Am. J. Ophthal. 1959; 48: 528–535
  • Becker B. Accumulation of rubidium‐86 by the rabbit lens. Invest. Ophthal. & Vis. Sci. 1962; 1: 502–506
  • Haber F., Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Royal Soc. Lond. Series A. 1934; 147: 332–351
  • McCord J. M., Day E. D., Jr. Superoxide‐dependent production of hydroxyl radical catalyzed by iron‐EDTA complex. FEBS Lett. 1978; 86: 139–142
  • Butler J., Jayson G. G., Swallow A. J. The reactions between the superoxide anion radical and cytochrome C. Biochim. Biophys. Acta. 1975; 408: 215–222
  • Fukui H. N. The effect of hydrogen peroxide on the rubidium transport of the rat lens. Exp. Eye Res. 1976; 23: 595–599
  • Jernigan H. M., Fukui H. N., Goosey J. D., Kinoshita J. H. Photodynamic effects of Rose Bengal or riboflavin on carrier‐mediated transport systems in rat lens. Exp. Eye Res. 1981; 32: 461–466
  • Barber A. A., Bernheim F. Lipid peroxidation: its measurement, occurrence, and significance in animal tissues. Adv. Gerontol. Res. 1967; 2: 355–403
  • Holman R. T. Autoxidation of fats and related substances. Progress in chemistry of fats and other lipids. Academic Press, New York 1954; 51–98
  • Dahle L. K., Hill E. J., Holman R. T. The thiobarbituric acid reaction and the auto‐oxidation of PUFA methyl esters. Arch. Biochem. Biophys. 1962; 98: 253–261
  • Varma S. D., Srivastava V. K., Richards R. D. Photoperoxidation in lens and cataract formation: preventive role of superoxide dismutase, catalase and vitamin C. Ophthal. Res. 1982; 14: 167–175
  • Becker B. Ascorbate transport in guinea pig eyes. Invest. Ophthal. & Vis. Sci. 1967; 6: 410–415
  • Harris A., Robinson A. B., Pauling L. Blood plasma L‐ascorbic acid concentration for oral L‐ascorbic acid dosage up to 12 grams per day. Int. Res. Commun. System 1973; 1: 24
  • Pirie A. A light‐catalyzed reaction in the aqueous humour of the eye. Nature (London). 1965; 205: 500–501
  • Pirie A. The effect of sunlight on proteins of the lens. Contemporary Ophthalmology, J. G. Bellows. Williams & Wilkins, Balto, Maryland 1972; 494–501
  • Halliwell B., Foyer C. H. Ascorbic acid, metal ions, and the superoxide radical. Biochem. J. 1976; 155: 696–700
  • Kinsey V. E., Jackson B. Investigation of the blood‐aqueous barrier in the newborn. Am. J. Ophthal. 1949; 32: 374–378
  • Tappel A. L. Lipid peroxidation damage to cell components. Fed. Proc. 1973; 32: 1870–1874
  • Moore T. The effect of vitanin E deficiency on the vitamin A reserve of the rat. Biochem. J. 1940; 34: 1321–1328
  • Diplock A. T., Baum H., Lucy J. The effect of vitamin E on the oxidation state of selenium in rat liver. Biochem. J. 1971; 123: 721–729
  • Schwarz K. Role of vitamin E, selenium, and related factors in experimental nutritional liver disease. Fed. Proc. 1965; 24: 58–67
  • Lucy J. A. Functional and structural aspects of biological membranes: a suggested structural role for vitamin E in the control of membrane permeability and stability. Ann. NY Acad. Sci. 1972; 203: 4–11
  • Nair P. B. Vitamin E and metabolic regulation. Ann. NY Acad. Sci. 1972; 203: 53–61
  • Bieri J. C. Antioxidant effects in biochemistry and physiology. Prog. Chem. Fats and other Lipids. 1969; 9: 247–266
  • Varma S. D., Richards R. D., Beachy N. Photoperoxidation of lens lipids: prevention by vitamin E. Photochem. Photobiol. 1982; 36: 623–626
  • Kuck J. F., Jr., Kuwabara T., Kuck K. The emory mouse cataract: an animal model for human senile cataracts. Current Eye Res. 1982; 1: 643–649
  • Varma S. D., Chand D., Sharma Y. R., Kuck J. F. Effect of vitamin E on cataract development in emory mice. Invest. Ophthal. & Vis. Sci. 1983; 24: 31, ARVO suppl.
  • Bhuyan D. K., Bhuyan K. C., Kuck J. F. R., Kern H. L. Increased lipid peroxidation and altered membrane functions in emory mouse cataract. Invest. Ophthal. & Vis. Sci. 1982; 22: 107, ARVO suppl.
  • Zigler J. S., Hess H. H. Lipid peroxidation products as possible initiations of cataract. Invest. Ophthal. & Vis. Sci. 1983; 24: 75, ARVO suppl.
  • Goosey J. D., Allison M. E., Garcia C. A. A lipid peroxidative mechanism for posterior subcapsular cataract formation in the rabbit. Invest. Ophthal. & Vis. Sci. 1983; 24: 68, ARVO suppl.
  • Takemoto L. J., Azari P., Gorthy W. C. Role of sulfhydryl groups in the formation of a hereditary cataract in the rat. Exp. Eye Res. 1975; 20: 1–13
  • Chand D., Varma S. D. Human lens fatty acids composition. Invest. Ophthal. & Vis. Sci. 1983; 24: 31, ARVO suppl.
  • Bhuyan K. C., Bhuyan D. K., Podos S. M. Evidence of increased lipid peroxidation in cataracts. IRCS 1981; 9: 126–127
  • Chand D., Varma S. D., Richards R. D. Lens lipids peroxidation. Conjugated acylpolyene and schiff bases in human cataracts Invest. Ophthal. & Vis. Sci. 1981; 20: 218, ARVO suppl.
  • Zigler J. S. Singlet oxygen as a possible factor in human senile nuclear cataract development. Current Eye Res. 1984, in press
  • Jerniqan H. Effects of riboflavinsensitized photo‐oxidation on choline metabolism in cultured rat lenses. Current Eye Res. 1984, in press
  • Bhuyan K. C., Bhuyan D. K. Molecular mechanism of cataractogenesis. III. Toxic metabolites of oxygen as initiators of lipid peroxidation and cataract. Current Eye Res. 1984, in press
  • Srivastava S. K. Lens glutathione depletion by 1‐chloro‐2, 4‐dinitrobenzene and oxidative stress. Current Eye Res. 1984, in press
  • Garner W. Determination of the solvent accessibility of specific aromatic residues in gamma‐crystallin by photo‐CINPP NMR measurements. Current Eye Res. 1984, in press
  • Reddy V. N., Giblin F. J., Matsuda H. Defense system of the lens against oxidative damage. Red Blood Cell and Lens Metabolism, S. K. Srivastava. Elsevier/North Holland, New York 1980; 139–158
  • Zigman S. Influence of aging and light on oxidation: reduction reactions in the lens. Red Blood Cell and Lens Metabolism, S. K. Srivastava. Elsevier/North Holland, New York 1980; 181–184
  • Goosey J. D., Zigler J. S., Matheson I. B. C. Effects of singlet oxygen on human lens crystallins in vitro. Science 1981; 20: 679–682
  • Misra H. P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972; 247: 3170–3175
  • Bessey O. A., King C. G. The distribution of vitamin C in plant and animal tissues, and its determination. J. Biol. Chem. 1933; 103: 687–698
  • Biochemists Handbook, Cyril Long. Van Nostrand Publishers, Princeton, New Jersey 1961
  • Davson H. The cornea. Physiology of the Eye. Academic Press, New York 1962; 90

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.