134
Views
35
CrossRef citations to date
0
Altmetric
Review Article

A review of the molecular mechanism of HSV-1 latency

, , , , , , & show all
Pages 1-13 | Received 17 Aug 1990, Accepted 12 Nov 1990, Published online: 02 Jul 2009

References

  • Willey D. E., Trousdale M. D., Nesburn A. B. Reactivation of murine latent HSV infection by epinephrine iontophoresis. Invest. Ophthal. Vis. Sci. 1984; 25: 945–950
  • Hill J. M., Rayfield M. A., Haruta Y. Strain specificity of spontaneously and adrenergically induced herpes simplex virus type 1 ocular reactivation in latently infected rabbits. Curr. Eye Res. 1987; 6: 91–97
  • Becker W. B., Kipps A., McKenzie D. Disseminated herpes simplex virus infection: its pathogenesis based on virological and pathological studies in 33 cases. Am. J. Dis. Child. 1968; 115: 1–8
  • Nahmias A. J., Roizman B. Infection with herpes simplex viruses 1 and 2. N. Engl. J. Med. 1973; 289: 667–674
  • Roizman B., Sears A. E. An inquiry into the mechanisms of herpes simplex virus latency. Ann. Rev. Microbiol. 1987; 41: 543–571
  • Lancz G. J., Zettlemoyer T. L. Restricted replication of herpes simplex virus in neural cells. Proc. Soc. Exp. Biol. Med. 1976; 152: 302–306
  • Adler R., Gloriosos J. C., Levine M. Infection by herpes simplex viruses and cells of nervous system origin: characterization of a non-permissive interaction. J. Gen. Virol. 1978; 39: 9–20
  • Morahan P. S., Mama S., Anaraki F., Leary K. Molecular localization of abortive infection of resident peritoneal macrophages by herpes simplex virus type 1. J. Virol. 1989; 63: 2300–2307
  • Ace C. I., McKee T. A., Ryan J. M., Cameron J. M., Preston C. M. Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate early gene expression. J. Virol. 1989; 63: 2260–2269
  • Goding C. R., O'Hare P. Herpes simplex virus Vmw65-octamer binding protein interaction: a paradigm for combinatorial control of transcription. Virology 1989; 173: 363–367
  • Stern S., Tanaka M., Herr W. The Oct-1 homoeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature 1989; 341: 624–629
  • Kemp L. M., Dent C. L., Latchman D. S. Octamer motif mediates transcriptional repression of HSV immediate-early genes and octamer-containing cellular promoters in neuronal cells. Neuron 1990; 4: 215–222
  • Baringer J. R., Swoveland P. Recovery of herpes simplex virus from human trigeminal ganglions. N. Engl. J. Med. 1973; 288: 648–650
  • Warren K. G., Brown S. M., Wroblewska Z., Gilden D., Koprowski H., Subak-Sharpe J. Isolation of latent herpes simplex virus from the superior cervical and vagus ganglions of human beings. N. Engl. J. Med. 1978; 298: 1068–1069
  • Lohr J. M., Nelson J. A., Oldstone M. B.A. Is herpes simplex virus associated with peptic ulcer disease?. J. Virol 1990; 64: 2168–2174
  • Lycke E., Kristensson K., Svennerholm B., Vahlne A., Ziegler R. Uptake and transport of herpes simplex virus in neurites of rat dorsal root ganglia cells in culture. J. Gen. Virol. 1984; 65: 55–64
  • Margolis T. P., LaVail J. H., Setzer P. Y., Dawson C. R. Selective spread of herpes simplex virus in the central nervous system after ocular inoculation. J. Virol. 1989; 63: 4756–4761
  • Ugolini G., Kuypers H. G.J.M., Simmons A. Retrograde transneuronal transfer of herpes simplex virus type 1 (HSV1) from motor neurones. Brain Res. 1987; 422: 242–256
  • Vallee R. B., Shpetner H. S., Paschal B. M. The role of dynein in retrograde axonal transport. Trends Neurol. Sci. 1989; 12: 3–7
  • Lycke E., Hamark B., Johansson M., Krotochwil A., Lycke J., Svennerholm B. Herpes simplex virus infection of the human sensory neuron. An electron microscopy study. Arch. Virol. 1988; 101: 87–104
  • Walz M. A., Yamamoto H., Notkins A. L. Immunological response restricts number of cells in sensory ganglia infected with herpes simplex virus. Nature 1976; 264: 554–559
  • Fraser N. W., Lawrence N. C., Wroblewska Z., Gilden D. H., Koprowski H. Herpes Simplex Type I DNA in Human Brain Tissue. Proc. Natl. Acad. Sci. USA 1981; 78: 6461–6465
  • Rock D. L., Fraser N. W. Detection of HSV-1 genome in the central nervous system of latently infected mice. Nature (London) 1983; 302: 523–525
  • Rock D. L., Fraser N. W. Latent herpes simplex virus type 1 DNA contains two copies of the virion DNA joint region. J. Virol. 1985; 55: 849–852
  • Poffenberg K. L., Roizman B. Studies on a non-inverting genome of a viable herpes simplex virus 1. Presence of head-to-tail linkage in packaged genomes and requirements for circularization of infection. J. Virol. 1985; 53: 589–595
  • Efstathiou S., Minson C., Field H. J., Anderson J. R., Wildly P. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and humans. J. Virol. 1986; 57: 446–455
  • Puga A., Cantin E. M., Wohlenberg C., Openshaw H., Notkins A. L. Different sizes of restriction endonuclease fragments from the terminal repetitions of the herpes simplex virus type 1 genome latent in trigeminal ganglia of mice. J. Gen. Virol. 1984; 65: 437–444
  • Mellerick D. M., Fraser N. W. Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 1987; 158: 265–275
  • Spivack J. G., Fraser N. W. Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection. J. Virol. 1988; 62: 1479–1485
  • Cabrera C. V., Wohlenberg C., Openshaw H., Rey-Mendez M., Puga A., Notkins A. L. Herpes simplex virus DNA sequences in the CNS of latently infected mice. Nature 1980; 288: 288–290
  • Puga A., Rosenthal J. D., Openshaw H., Notkins A. L. Herpes simplex virus DNA and mRNA sequences in acutely and chronically infected trigeminal ganglia of infected mice. Virology 1978; 89: 102–111
  • Yisraeli J., Szyf M. Gene methylation pattern and expression. DNA Methylation: Biochemistry and Biological Significance, A. Razira, H. Cedar, A. D. Riggs. Springer-Verlag, New York 1984; 353–378
  • Ehrlich M., Yang R. Y.H. 5-ethylcytosine in eukaryotic DNA. Science 1981; 212: 1350–1357
  • Youssoufian H., Hammer S. M., Hirsch M. S., Mulder C. Methylation of the viral genome in an in vitro model of herpes simplex virus latency. Proc. Natl. Acad. Sci. USA 1982; 79: 2207–2210
  • Dressier G. R., Rock D. L., Fraser N. W. Latent herpes simplex virus type 1 DNA is not extensively methylated in vivo. J. Gen. Virol. 1987; 68: 1761–1765
  • Whitby A. J., Blyth W. A., Hill T. J. The effect of DNA hypomethylating agents on the reactivation of herpes simplex virus from latently infected mouse ganglia in vitro. Arch. Virol. 1987; 97: 137–144
  • Deshmane S., Fraser N. W. During latency, herpes simplex virus type-1 DNA is associated with nucleosomes in a chromatin structure. J. Virol. 1989; 63: 943–947
  • Muggeridge M. I., Fraser N. W. Chromosomal organization of the herpes simplex virus genome during acute infection of the mouse central nervous system. J. Virol. 1986; 59: 764–767
  • Leinbach S. S., Summers W. C. The structure of herpes simplex virus type 1 DNA as probed by micrococcal nuclease digestion. J. Gen. Virol. 1980; 51: 45–59
  • Seal B. S., Martinez J. D., Hall M. R., St. Jeor S. C. Occurrence of bovine herpesvirus-1 DNA in nucleosomes and chromatin of bovine herpesvirus-1 infected cells: identification of a virion-associated protein in chromatin of infected cells. Arch. Virol. 1988; 99: 221–236
  • Hill T. J. Herpes simplex virus latency. The Herpesviruses, B. Roizman. Plenum Publishing Corp., New York 1985; 175–240
  • Stroop W. G., Rock D. L., Fraser N. W. Localization of herpes simplex virus in the trigeminal and olfactory systems of the mouse central nervous system during acute and latent infections by in situ hybridization. Lab. Invest. 1984; 51: 27–38
  • Fraser N. W., Deatly A. M., Mellerick D. M., Muggeridge M. I., Spivack J. G. Molecular biology of latent HSV-1. Human Herpesvirus Infections: Pathogenesis, Diagnosis, and Treatment, C. Lopez, B. Roizman. Raven Press, New York 1986; 39–54
  • Deatly A. M., Spivack J. G., Lavi E., O'Boyle D. R., Fraser N. W. Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissue of mice map to similar regions of the viral genome. J. Virol. 1988; 62: 749–756
  • Deatly A. M., Spivack J. G., Lavi E., Fraser N. W. RNA from an immediate early region of the HSV-1 genome is present in the trigeminal ganglia of latently infected mice. Proc. Natl. Acad. Sci. USA 1987; 84: 3204–3208
  • Rock D. L., Nesburn A. B., Ghiasi H., Ong J., Lewis T. L., Lokensgard J. R., Wechsler S. M. Detection of latency related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. J. Virol. 1987; 61: 3820–3826
  • Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. T. RNA complementary to a herpes virus gene mRNA is prominent in latently infected neurons. Science 1987; 235: 1056–1059
  • Croen K. D., Ostrove J. M., Dragovic L. J., Smialek J. E., Straus S. E. Latent herpes simplex virus in human trigeminal ganglia: detection of an immediate early gene “antisense” transcript by in situ hybridization. N. Engl. J. Med. 1987; 317: 1427–1432
  • Steiner I., Spivack J. G., O'Boyle D. R., Lavi E., Fraser N. W. Latent herpes simplex virus type 1 transcription in human trigeminal ganglia. J. Virol. 1988; 62: 3493–3496
  • Stevens J. G., Haar L., Porter D., Cook M. L., Wagner E. K. Prominence of the herpes simplex virus latency associated transcript in trigeminal ganglia from seropositive humans. J. Infect. Dis. 1988; 158: 117–123
  • Spivack J. G., Fraser N. W. Detection of herpes simplex type 1 transcripts during latent infection in mice. J. Virol. 1987; 61: 3841–3847
  • Krause P. R., Croen K. D., Straus S. E., Ostrove J. M. Detection and preliminary characterization of herpes simplex virus type 1 transcripts in latently infected human trigeminal ganglia. J. Virol. 1988; 62: 4819–4823
  • Wagner E. K., Devi-Rao G., Feldman L. T., Dobson A. T., Zhang Y. F., Hill J. M., Flanagan W. M., Stevens J. G. Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J. Virol. 1988; 62: 1194–1202
  • Wagner E. K., Flanagan W. M., Devi-Rao G., Zhang Y. F., Hill J. M., Anderson K. P., Stevens J. G. The herpes simplex virus latency-associated transcript is spliced during the latent phase of infection. J. Virol. 1988; 62: 4577–4585
  • Wechsler S. L., Nesburn A. B., Watson R., Slanina S. M., Ghiasi H. Fine mapping of the latency-related gene of herpes simplex virus type 1: alternate splicing produces distinct latency-related RNAs containing open reading frames. J. Virol. 1988; 62: 4051–4058
  • Mitchell W. J., Lirette R. P., Fraser N. W. Mapping of low abundance latency associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. J. Gen. Virol. 1990; 71: 125–132
  • Dobson A. T., Sederati F., Devi-Rao G., Flanagan J., Farrell M. J., Stevens J. G., Wagner E. K., Feldman L. T. Identification of the latency-associated transcript promoter by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected wih a recombinant herpes simplex virus. J. Virol 1989; 63: 3844–3851
  • Spivack J. G., Fraser N. W. Expression of herpes simplex virus type 1 (HSV-1) latency associated transcripts and transcripts affected by the deletion in avirulent mutant HFEM: Evidence for a new class of HSV-1 genes. J. Virol. 1988; 62: 3281–3287
  • Ho D. Y., Mocarski E. S. Herpes simplex virus latent RNA (LAT) is not required for latent infection in the mouse. Proc. Natl. Acad. Sci. USA 1989; 86: 7596–7600
  • Batchelor A. H., O'Hare P. Regulation and cell-type-specificity activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. J. Virol. 1990; 64: 3269–3279
  • Zwaagstra J., Ghiasi H., Nesburn A. B., Wechsler S. L. In vitro promoter activity associated with the latency-associated transcript gene of herpes simplex virus type 1. J. Gen. Virol. 1989; 70: 2163–2169
  • Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MacLean A. R., Subak-Sharpe J., Fraser N. W. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J. 1989; 8: 505–511
  • Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. A deletion mutant of the latency associated transcript of herpes simplex virus type 1 reactivates from the latent infection. J. Virol. 1989; 63: 2893–2900
  • Hill J. M., Sederati F., Javier R. T., Wagner E. K., Stevens J. G. Herpes simplex virus latent phase transcription facilitates in vivo reactivation. Virology 1990; 174: 117–125
  • Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 1988; 166: 254–257
  • Block T. M., Spivack J. G., Steiner I., Deshmane S., McIntosh M. T., Lirette R. P., Fraser N. W. A herpes simplex virus type 1 latency-associated transcript mutant reactivates with normal kinetics from latent infection. J. Virol. 1990; 64: 3417–3426
  • Wroblewska Z., Savage K., Spivack J. G., Fraser N. W. Detection of HSV-1 proteins prior to the appearance of infectious virus in mouse trigeminal ganglia during reactivation of latent infection. Virus Res. 1989; 14: 95–106
  • McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. The complete sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 1988; 69: 1531–1574
  • Wechsler S. L., Nesburn J., Zaagstra N., Ghiasi H. Sequence of the latency related gene of herpes simplex virus type 1. Virology 1989; 168: 168–172
  • Lynas C., Laycock K. A., Cook S. D., Hill T. J., Blyth W. A., Maitland N. J. Detection of herpes simplex virus type 1 gene expression in latently and productively infected mouse ganglia using the polymerase chain reaction. J. Gen. Virol. 1989; 70: 2345–2355
  • Leib D. A., Coen D. M., Bogard C. L., Hicks K. A., Yager D. R., Knipe D. M., Tyler K. L., Schaffer P. A. Immediate-early gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J. Virol. 1989; 63: 759–768
  • Meignier B., Longnecker R., Nazos P. M., Sears A. E., Roizman B. Virulence and establishment of latency by genetically engineered deletion mutants of herpes simplex virus type 1. J. Virol. 1988; 162: 251–254
  • Sears A. E., Halliburton I. W., Meigner B., Silver S., Roizman B. Herpes simplex virus 1 mutant deleted in the alpha 22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency. J. Virol. 1985; 55: 338–346
  • Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe K. M. Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc. Natl. Acad. Sci. USA 1989; 86: 4736–4740
  • Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infection of mice and for replication in mouse cells. Virology 1989; 173: 276–283

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.