24
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Docosahexaenoic acid is taken up by the inner segment of frog photoreceptors leading to an active synthesis of docosahexaenoyl inositol lipids: similarities in metabolism in vivo and in vitro

, &
Pages 21-28 | Received 29 Jul 1993, Accepted 19 Nov 1993, Published online: 02 Jul 2009

References

  • Aveldaño de Caldironi M. I., Bazan N. G. Composition and biosynthesis of molecular species of retina phosphoglycerides. Neurochem. Int. 1980; 1: 81–392
  • Fliesler S. J., Anderson R. E. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 1983; 22: 79–131
  • Boesze-Battaglia K., Albert A. D. Fatty acid composition of bovine rod outer segment plasma membrane. Exp. Eye Res. 1989; 49: 699–701
  • Tinoco J., Babcock R., Hincenbergs I., Medwadowski B., Miljanich P. Linolenic acid deficiency: Changes in fatty acid patterns in female and male rats raised on a linolenic acid-deficient diet for two generations. Lipids 1978; 13: 6–17
  • Tinoco J. Dietary requirements and functions of α-linolenic acid in animals. Prog. Lipid Res. 1982; 21: 1–45
  • Wheeler T. G., Benolken R. M., Anderson R. E. Visual membranes: Specificity of fatty acid precursors for the electrical response to illumination. Science 1975; 188: 1312–1314
  • Neuringer M., Connor W. E. N-3 fatty acids in the brain and retina: Evidence for their essentiality. Nutr. Rev. 1986; 44: 285–294
  • Neuringer M., Connor W. E., Lin D. S., Barstad L., Luck S. J. Biochemical and functional effects of prenatal and postnatal ω3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. USA 1986; 83: 4021–4025
  • Uauy R. D., Birch D. G., Birch E. E., Tyson J. E., Hoffman D. R. Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr. Res. 1990; 28: 485–492
  • Birch D. G., Birch E. E., Hoffman D. R., Uauy R. D. Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest. Ophthalmol. Vis. Sci. 1992; 33: 2365–2376
  • Birch E. E., Birch D. G., Hoffman D. R., Uauy R. Dietary essential fatty acid supply and visual acuity development. Invest. Ophthalmol. Vis. Sci. 1992; 33: 3242–3253
  • Scott B. L., Bazan N. G. Membrane docosahexanoate is supplied to the developing brain and retina by the liver. Proc. Nat. Acad. Sci. USA 1989; 86: 2903–2907
  • Rosenthal M. D. Fatty acid metabolism of isolated mammalian cells. Prog. Lipid Res. 1987; 26: 87–124
  • Sprecher H. Long chain fatty acid metabolism. ‘Polyunsaturated Fatty Acids in Human Nutrition’, U. Bracco, R. J. Deckelbaum. Raven Press, New York 1992; 13–24
  • Bazan H. E.P., Careaga M. M., Sprecher H., Bazan N. G. Chain elongation and desaturation of eicosapentaenoate to docosahexaenoate and phospholipid labeling in the rat retina in vivo. Biochim. Biophys. Acta 1982; 712: 123–128
  • Moore S. A., Yoder E., Spector A. A. Role of the blood-brain barrier in the formation of long-chain ω-3 and ω-6 fatty acids from essential fatty acid precursors. J. Neurochem. 1990; 55: 391–402
  • Moore S. A., Yoder E., Murphy S., Dutton G. R., Spector A. A. Astrocytes, not neurons, produce docosahexaenoic acid (22:6ω-3) and arachidonic acid (20:4ω-6). J. Neurochem. 1991; 56: 518–524
  • Wetzel M. G., Li J., Alvarez R. A., Anderson R. E., O'Brien P. J. Metabolism of linolenic acid and docosahexaenoic acid in rat retinas and rod outer segments. Exp. Eye Res. 1991; 53: 437–446
  • Bazan N. G., Birkle D. L., Reddy T. S. Biochemical and nutritional aspects of the metabolism of polyunsaturated fatty acids and phospholipids in experimental models of retinal degeneration. ‘Retinal Degeneration: Experimental and Clinical Studies’, M. M. La Vail, R. E. Anderson, J. G. Holly field. Alan R. Liss, New York 1985; 159–187
  • Bazan N. G., Rodriguez de Turco E. B., Gordon W. C. Pathways for the conservation of docosahexaenoic acid in photoreceptors and synapses: Biochemical and autoradiographic analysis. Can. J. Physiol. Pharmacol. 1993; 71, In press
  • Gordon W. C., Bazan N. G. Docosahexaenoic acid utilization during rod photoreceptor cell renewal. J. Neurosci. 1990; 10: 2190–2204
  • Wang N., Anderson R. E. Enrichment of polyunsaturated fatty acids from rat retinal pigment epithelium to rod outer segments. Current Eye. Res. 1992; 11: 783–791
  • Bazan N. G., Gordon W. C., Rodriguez de Turco E. B. Docosahexaenoic acid uptake and metabolism in photoreceptors: Retinal conservation by an efficient RPE cell-mediated recycling process. ‘Neurobiology of Essential Fatty Acids. Advances in Experimental Medicine and Biology’, N. G. Bazan, M. G. Marfi, G. Toffano. Plenum, New York 1992; Vol. 318: 295–306
  • Wang N., Wiegand R. D., Anderson R. E. Uptake of 22-carbon fatty acids into rat retina and brain. Exp. Eye Res. 1992; 54: 933–939
  • Bazan N. G., Reddy T. S., Redmond T. M., Wiggert B., Chader G. J. Endogenous tatty acids are covalently and noncovalently bound to interphotoreceptor retinoid-binding protein in the monkey retina. J. Biol. Chem. 1985; 260: 13677–13680
  • Gordon W. C., Bazan N. G. [3H]-docosahexaenoic acid uptake and utilization by retinal pigment epithelium and photoreceptors. Invest. Ophthalmol. Vis. Sci. 1993; 34: 2402–2411
  • Rodriguez de Turco E. B., Gordon W. C., Bazan N. G. Rapid and selective uptake, metabolism, and cellular distribution of docosahexaenoic acid among rod and cone photoreceptor cells in the frog retina. J. Neurosci. 1991; 11: 3667–3678
  • Rodriguez de Turco E. B., Gordon W.C., Peyman G. A., Bazan N. G. Preferential uptake and metabolism of docosahexaenoic acid in membrane phospholipids from rod and cone photoreceptor cells of human and monkey retinas. J. Neurosci. Res. 1990; 27: 522–532
  • Dahl N. A., Gordon W. C. Photomembrane turnover in frog: Light intensity and spectral correlates. Exp. Eye Res. 1992; 55: 839–852
  • Folch J., Lees M., Sloane-Stanley G. H. A simple method for the purification of total lipids from animal tissues. J. Biol. Chem. 1957; 226: 497–509
  • Rouser G., Fleischer S., Yamamoto A. Two-dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 1970; 5: 494–496
  • Marcheselli V. L., Bazan N. G. Quantitative analysis of fatty acids in phospholipids, diacylglycerols, free fatty acids, and other lipids. J. Nutr. Biochem. 1990; 1: 231–237
  • Rodriguez de Turco E. B., Gordon W. C., Bazan N. G. Modulation of uptake and metabolism of 3H-DHA in retina as a function of extracellular concentration of free DHA. Invest. Ophthalmol. Vis. Sci. 1991; 32: 702, (Suppl.)
  • Santos F. F., Rodriguez de Turco E. B., Gordon W. C., Peyman G. A., Bazan N. G. Perturbations in docosahexaenoic acid metabolism in rabbit retina due to experimental detachment. Invest. Ophthalmol. Vis. Sci. 1992; 33: 859, (Suppl.)
  • Martin R. E., Rodriguez de Turco E. B., Gordon W. C., Bazan N. G. Docosahexaenoic acid (DHA) metabolism in poodles with progressive rod-cone degenerations (prcd). Invest. Ophthalmol. Vis. Sci. 1992; 33: 1066, (Suppl.)
  • Rodriguez de Turco E. B., Gordon W. C., Morgan W. K., Bazan N. G. Heterogeneity in docosahexaenoic acid (22:6 omega 3) metabolism in different retinal regions of control and prcd dogs. Invest. Ophthalmol. Vis. Sci. 1993; 34: 741, (Suppl.)
  • Gordon W. C., Rodriguez de Turco E. B., Peyman G. A., Bazan N. G. Uptake and distribution of docosahexaenoic acid (3H-22:6, n-3) in detached and attached human retina. Invest. Ophthalmol. Vis. Sci. 1991; 32: 702, (Suppl.)
  • Bazan H. E.P., Sprecher H., Bazan N. G. De novo biosynthesis of docosahexaenoyl phosphatidic acid in bovine retinal microsomes. Biochim. Biophys. Acta 1984; 796: 11–16
  • Bazan N. G., Di Fazio de Esculante M. S., Careaga M. M., Bazan H. E.P., Giusto N. M. High content of 22:6 (docosahexaenoate) and active [2-3H]-glycerol metabolism of phosphatidic acid from photoreceptor membranes. Biochim. Biophys. Acta 1982; 712: 702–706
  • Choe H.-G., Anderson R. E. Unique molecular species composition of glycerolipids of frog rod outer segments. Exp. Eye Res. 1990; 51: 159–165
  • Aveldaño M. I., Pasquare de Garcia S. J., Bazan N. G. Biosynthesis of molecular species of inositol, choline, serine, and ethanolamine glycerophospholipids in the bovine retina. J. Lipid Res. 1983; 24: 628–638
  • Rodriguez de Turco E. B., Gordon W. C., Parkins N. E., Bazan N. G. Contribution of de novo and turnover pathways to the synthesis of DHA-lipids in frog retinal cells. Invest. Ophthalmol. Vis. Sci. 1992; 33: 1148, (Suppl.)
  • Aveldaño M. I., Bazan N. G. Molecular species of phosphatidylcholine, -ethanolamine, -serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res. 1983; 24: 620–627
  • Stinson A. M., Wiegand R. D., Anderson R. E. Fatty acid and molecular species compositions of phospholipids and diacylglycerols from rat retinal membranes. Exp. Eye Res. 1991; 52: 213–218
  • Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinas. C. Science 1992; 258: 607–614
  • Hayashi F., Amakawa T. Light-mediated breakdown of phosphatidylinositol-4,5-bisphosphate in isolated rod outer segments of frog photoreceptor. Biochem. Biophys. Res. Comm. 1985; 128: 954–959
  • Millar F. A., Fisher S. C., Muir C. A., Edwards E., Hawthorne J. N. Polyphosphoinositide hydrolysis in response to light stimulation of rat and chick retina and retinal rod outer segments. Biochim. Biophys. Acta 1988; 970: 205–211
  • Ghalayini A. J., Anderson R. E. Activation of bovine rod outer segment phospholipase C by arrestin. J. Biol. Chem. 1992; 267: 1–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.