24
Views
21
CrossRef citations to date
0
Altmetric
Original Article

Peptide hydrolysis in lens: role of leucine aminopeptidase, aminopeptidase III, prolyloligopeptidase and acylpeptidehydrolase

&
Pages 363-369 | Received 12 Jun 1995, Accepted 03 Jan 1996, Published online: 02 Jul 2009

References

  • Jaffe N. S., Horwitz J. Lens and cataract. Text Book of Ophthalmology, S. M. Podos, M. Yanoff. Gower Medical Publishing, New York 1992; 1.1–1.9
  • Hockwin O., Ohrloff C. Enzymes in normal aging and cataractous lenses. Molecular Biology of the Eye Lens, H. Bloemendal. J. Wiley, New York 1981; 367–413
  • Zhang W., Augusteyn R. C. Aging of glutathione reductase in the lens. Exp. Eye Res. 1994; 59: 91–96
  • Taylor A., Daimes A. M., Lee J., Surgenor T. Identification and quantification of leucine aminopeptidase in aged normal and cataractous human lenses and ability of bovine lens leucine aminopeptidase to cleave bovine lens crystallins. Curr. Eye Res. 1983; 2: 45–56
  • Taylor A., Brown M. J., Cohen J. Localization of leucine aminopeptidase in normal hog lens by immunofluorescence and activity assays. Invest. Ophthalmol. Vis. Sci. 1983; 24: 1172–80
  • Hoenders H. J., Bloemendal H. Aging of lens proteins. Molecular and Cellular Biology of the Eye Lens, H. Bloemendal. Wiley, New York 1981; 279–326
  • Harding J. J. Changes in lens proteins in cataract. In Aging of lens proteins. Molecular and Cellular Biology of the Eye Lens, H. Bloemendal. Wiley, New York 1981; 327–366
  • Spector A. Aspects of the biochemistry of cataract. The Ocular Lens, H. Maisel. Mercel Dekker Inc., New York 1985; 405–438
  • David L. L., Azuma M., Shearer T. R. Cataract and the acceleration of calpain-induced β–crystallin insolu-bilization occurring during normal maturation of rat lens. Invest. Ophthalmol. Vis. Sci. 1994; 35: 785–793
  • Taylor A., Davies K. J. A. Protein oxidation and loss of protease activity may lead to cataract formation in the aged lens. Free. Red. Biol. Med. 1987; 3: 371–317
  • Taylor A. Cataract: relationship between nutrition and oxidation. J. American Coll. Nutr. 1993; 12(2)138–146
  • Fleshman K. R., Margolis J. W., Fu S.-CJ., Wagner B. J. Age changes in bovine lens endopeptidase activity. Mech. Aging Develop. 1985; 31: 37–47
  • Yoshida H., Murachi T., Tsukahara I. Distribution of calpain I, calpain II and calpastatin in bovine lens. Invest. Opthalmol. Vis. Sci. 1985; 26: 953–956
  • Jahngen J. H., Lipman R. D., Eisenhauer D. A., Jahngen E. G., Jr, Taylor A. Aging and cellular maturation causes changes in ubiquitin-eye lens protein conjugates. Arch. Biochem. Biophys. 1990; 276: 32–37
  • Srivastava O. P. Age-related increase in concentration and aggregation of degraded polypeptides in human lenses. Exp. Eye Res. 1988; 47: 525–543
  • Roy D., Spector A. Human insoluble lens protein II. Isolation and characterization of a 9600 dalton polypep-tide. Exp. Eye Res. 1978; 26: 445–459
  • Shearer T. R., Shih M., Azuma M., David L. L. Precipitation of crystallins from young rat lens by endogenous calpain. Exp. Eye Res. 1995; 61: 141–150
  • Spector A. Lens aminopeptidase: purification and properties. J. Biol. Chem. 1963; 238: 1353–1357
  • Van Kamp G. J., Hoenders H. J. The distribution of the soluble proteins in the calf lens. Exp. Eye Res. 1973; 17: 417–426
  • Hanson J. H., Frohne M. Crystalline leucine aminopeptidase from lens. Methods Enzymology, L. Lorand. Academic Press, LondonUK 1976; 45: 504–521
  • Taylor A. Aminopeptidases: towards a mechanism of action. Trends in Biochem. Sci. 1993; 18: 167–172
  • Kim H., Lipscomb W. N. Structure and mechanism of bovine lens leucine aminopeptidase. Advances in Enzymology, A. Meister. John Wiley and Sons Inc., New York 1994; 68: 153–213
  • Carpenter F. J., Vahl J. M. Leucine aminopeptidase (bovine lens): mechanism of activation by Mg2+ and Mn2+ of the zinc metalloenzyme, amino acid composition, and sulfiydryl content. J. Biol. Chem. 1973; 248: 294–304
  • Burly S. K., David P. R., Lipscomb W. N. Leucine aminopeptidase: bestatin inhibition and a model for enzyme–catalyzed hydrolysis. Proc. Natl. Acad. Sci. USA 1991; 88: 6916–6920
  • Swanson A. A., Davis R. M., Jackson B. A., McDonald J. K. Lens exopeptidases. Exp. Eye Res. 1981; 32: 163–173
  • Lafferty M. A., Raducha M., Harris H. Soluble exopeptidases in bovine and human lens. Characterization by electrophoresis. Curr. Eye Res. 1984; 3: 1017–1031
  • Sharma K. K., Ortwerth B. J. Aminopeptidase III activity in normal and cataract lenses. Curr. Eye Res. 1986; 5: 373–380
  • Sharma K. K., Ortwerth B. J. Description of an acylpeptidehydrolase from lens. Exp. Eye Res. 1992; 54: 1005–1010
  • Sharma K. K., Ortwerth B. J. Purification and characterization of a prolyloligopeptidase from bovine lens. Exp. Eye Res. 1994; 59: 107–116
  • Taylor A., Tisdell F. E., Carpenter F. H. Leucine aminopeptidase (bovine lens): synthesis and kinetic properties of ortho-, meta-, and para-substitued leucyl-anilides. Arch. Biochem. Biophys. 1981; 210: 90–97
  • Pierscionek B., Augusteyn R. C. Protein distribution in concentric layers from single bovine lenses: changes with development and aging. Curr. Eye Res. 1988; 7: 11–23
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Sharma K. K., Ortwerth B. J. Isolation and characterization of a new aminopeptidase from bovine lens. J. Biol. Chem. 1986; 261: 4295–4301
  • Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchonic acid. Anal. Biochem. 1985; 150: 76–85
  • Gehrke C. W., Rexroad P. R., Schisla R. M., Absheer J. S., Zumwalt R. W. Quantitative analysis of cystine, methionine, lysine and nine other amino acids by a single oxidation 4 h hydrolysis method. J. Assoc. Anal. Chem. 1987; 70: 171–174
  • Sharma K. K., Elser N. J. Possible a-crystallin sequence specific protease in lens. (Abstract). Invest. Ophthaomol. Vis Sci. 1995; 36(Suppl.)S886
  • Tumminia S. J., Russell P. Cataract formation in transgenic mice containing HIV-1 protease linked to the αA-crystallin promoter. (Abstract). Invest. Ophthaomol. Vis Sci. 1995; 36(Suppl.)S879
  • Ifeanyi F., Takemoto L. Characterization of the major cyanogen bromide fragments of alpha-A crystallin. Curr. Eye Res. 1991; 10: 529–535
  • Merck K. B., De Haard-Hoekman W. A., Oude Essink B. B., Bloemendal H., De Jong W. W. Expression and aggregation of recombinant αA–crystallin and its two domains. Biochim. Biophys. Acta. 1992; 1130: 267–276
  • Sharma K. K., Ortwerth B. J. Peptide hydro-lases in lens. (Abstract). Invest. Ophthalmol. Vis. Sci. 1994; 35(Suppl.)1314
  • van Heyningen R., Trayhurn P. Proteolysis of lens proteins (autolysis). Exp. Eye Res. 1976; 22: 625–637

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.