383
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Macromolecular and dendrimer-based magnetic resonance contrast agents

, &
Pages 751-767 | Accepted 30 Apr 2010, Published online: 30 Jun 2010

References

  • Caravan P, Ellison J, McMurry T, Lauffer R. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 1999;99:2293–352.
  • Aime S, Chiaussa M, Digilio G, Gianolio E, Terreno E. Contrast agents for magnetic resonance angiographic applications: 1H and 17O NMR relaxometric investigations on two gadolinium(III) DTPA-like chelates endowed with high binding affinity to human serum albumin. J Biol Inorg Chem 1999;4:766–74.
  • Zhang Z, Nair SA, McMurry TJ. Gadolinium meets medicinal chemistry: MRI contrast agent development. Curr Med Chem 2005;12:751–78.
  • Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 2006;21: 1104–8.
  • High WA, Ayers RA, Chandler J, Zito G, Cowper SE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 2007;56:21–6.
  • Wiener E, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, . Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 1994;31:1–8.
  • Staudinger H. Ber Deut Chem Ges 1920;53:1073.
  • Bloembergen N, Morgen LO. Proton relaxation times in paramagnetic solutions: effects of electron spin relaxation. J Chem Phys 1961;34:842–50.
  • Bloembergen N, Purcell EM, Pound RV. Relaxation effects in NMR absorption. Phys Rev 1948;73:679–712.
  • Solomon I. Relaxation processes in a system of two spins. Phys Rev 1955;99:559–65.
  • Burton DR, Forsen S, Karlstrom G, Dwek RA. Proton relaxation enhancement (PRE) in biochemistry: a critical survey. Prog NMR Spectroscopy 1979;13:1–45.
  • Lauffer RB. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 1987;87:901–27.
  • Venditto VJ, Regino CAS, Brechbiel MW. PAMAM dendrimer based macromolecules as improved contrast agents. Mol Pharm 2005;2:302–11.
  • Ogan MD, Schmiedl U, Moseley ME, Grodd W, Paajanen H, Brasch RC. Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol 1987;22:665–71.
  • Peters T. Serum albumin. Adv Clin Chem 1970;13:37–111.
  • Schmiedl UU, Ogan MM, Paajanen HH, Marotti MM, Crooks LLE, Brito AAC, . Albumin labeled with Gd-DTPA as an intravascular, blood pool-enhancing agent for MR imaging: biodistribution and imaging studies. Radiology 1987;162:205–10.
  • Murad GJA, Walbridge S, Morrison PF, Garmestani K, Degen JW, Brechbiel MW, . Real-time, image-guided, convection-enhanced delivery of interleukin 13 bound to Pseudomonas exotoxin. Clin Cancer Res 2006;12:3145–51.
  • Turetschek K, Huber S, Floyd E, Helbich T, Roberts TPL, Shames DM, . MR imaging characterization of microvessels in experimental breast tumors by using a particulate contrast agent with histopathologic correlation. Radiology 2001;218:562–9.
  • Gossmann A, Okuhata Y, Shames DM, Helbich TH, Roberts TPL, Wendland MF, . Prostate cancer tumor grade differentiation with dynamic contrast-enhanced MR imaging in the rat: comparison of macromolecular and small-molecular contrast media-preliminary experience. Radiology 1999;213:265–72.
  • Bremerich J, Wendland MF, Arheden H, Wyttenbach R, Gao DW, Huberty JP, . Microvascular injury in reperfused infarcted myocardium: noninvasive assessment with contrast-enhanced echoplanar magnetic resonance imaging. J Am Coll Cardiol 1998;32:787–93.
  • Barrett T, Kobayashi H, Brechbiel M, Choyke PL. Macromolecular MRI contrast agents for imaging tumor angiogenesis. Eur J Radiol 2006;60:353–66.
  • Peters T. Serum albumin. Putnam FW. New York: Academic Press; 1975.
  • Baxter AB, Lazarus SC, Brasch RC. In vitro histamine release induced by magnetic resonance imaging and iodinated contrast media. Invest Radiol 1993;28:308–12.
  • Lauffer RB, Parmelee DJ, Ouellet HS, Dolan RP, Sajiki H, Scott DM, . MS-325: a small-molecule vascular imaging agent for magnetic resonance imaging. Acad Radiol 1996;3:S356–S358.
  • Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 1997;3:741–7.
  • McMurry TJ, Parmelee DJ, Sajiki H, Scott DM, Ouellet HS, Walovitch RC, . The effect of a phosphodiester linking group on albumin binding, blood half-life, and relaxivity of intravascular diethylenetriaminepentaacetato aquo gadolinium(III) MRI contrast agents. J Med Chem 2002;45:3465–74.
  • Cavagna FM, Maggioni F, Castelli PM, Daprà M, Imperatori LG, Lorusso V, . Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 1997;32:780–96.
  • Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, . The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 2002;124:3152–62.
  • Perreault P, Edelman MA, Baum RA, Yucel EK, Weisskoff RM, Shamsi K, . MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. Radiology 2003;229:811–20.
  • Shamsi K, Yucel EK, Chamberlin P. A summary of safety of gadofosveset (MS-325) at 0.03 mmol/kg body weight dose: phase II and phase III clinical trials data. Invest Radiol 2006;41:822–30.
  • Vander EL, Maton F, Laurent S, Seghi F, Chapelle F, Muller RN. A multinuclear MR study of Gd-EOB-DTPA: comprehensive preclinical characterization of an organ specific MRI contrast agent. Magn Reson Med 1997;38:604–14.
  • Vander EL, Chapelle F, Laurent S, Muller RN. Stereospecific binding of MRI contrast agents to human serum albumin: the case of Gd-(S)-EOB-DTPA (Eovist) and its ® isomer. J Biol Inorg Chem 2001;6:196–200.
  • Cavagna FM, Marzola P, Dapra M, Maggioni F, Vicinanza E, Castelli PM, . Binding of gadobenate dimeglumine to proteins extravasated into interstitial space enhances conspicuity of reperfused infarcts. Invest Radiol 1994;29:S50–S53.
  • Wallace RA, Haar JP, Miller DB, Woulfe SR, Polta JA, Galen KP, . Synthesis and preliminary evaluation of MP-2269: a novel, nonaromatic small-molecule blood-pool MR contrast agent. Magn Reson Med 1998;40:733–9.
  • Adzamli K, Spiller M, Koenig SH. Water-proton relaxation by noncovalent albumin-binding gadolinium chelate: an NMRD study of potential blood pool agent. Acad Radiol 2002;9:S11–S16.
  • Adzamli K, Vander EL, Laurent S, Muller RN. Deuterium NMR study of the MP-2269: albumin interaction – a step forward to the dynamics of non-covalent binding. MAGMA 2001;12:92–5.
  • Zheng J, Carr J, Harris K, Saker MB, Cavagna FM, Maggioni F, . Three-dimensional MR pulmonary perfusion imaging and angiography with an injection of a new blood pool contrast agent B-22956/1. J Magn Reson Imaging 2001;14:425–32.
  • Paetsch I, Huber ME, Bornstedt A, Schnackenburg B, Boesiger P, Stuber M, . Improved three-dimensional free-breathing coronary magnetic resonance angiography using gadocoletic acid (B-22956) for intravascular contrast enhancement. J Magn Reson Imaging 2004;20: 288–93.
  • Schuhmann-Giampieri G, Schmitt-Willich H, Frenzel T, Press WR, Weinmann HJ. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest Radiol 1991;26:969–74.
  • Slinkin MA, Curtet C, Faivre-Chauvet A, Sai-Maurel C, Gestin JF, Torchilin VP, . Biodistribution of anti-CEA F(ab’)2 fragments conjugated with chelating polymers: influence of conjugate electron charge on tumor uptake and blood clearance. Nucl Med Biol 1993;20:443–52.
  • Lake JR, Licko V, Van Dyke RW. Biliary secretion of fluid-phase markers by the isolated perfused rat liver. Role of transcellular vesicular transport. J Clin Invest 1985;76:676–84.
  • Wang SC, Wikstrom MG, White DL. Evaluation of Gd-DTPA-labeled dextran as an intravascular MR contrast agent: imaging characteristics in normal rat tissues. Radiology 1990;175:483–8.
  • Sirlin CB, Vera DR, Corbeil JA, Caballero MB, Buxton RB, Mattrey RF. Gadolinium-DTPA-dextran: a macromolecular MR blood pool contrast agent. Acad Radiol 2004;11:1361–9.
  • Mehvar R. Dextrans for targeted and sustained delivery of therapeutic and imaging agents. J Control Release 2000; 69:1–25.
  • Loubeyre P, Canet E, Zhao S, Benderbous S, Amiel M, Revel D. Carboxymethyl-dextran-gadolinium-DTPA as a blood-pool contrast agent for magnetic resonance angiography: experimental study in rabbits. Invest Radiol 1996; 31:288–93.
  • Kroft LJM, Doornbos J, Benderbous S, De Roos A. Equilibrium phase MR angiography of the aortic arch and abdominal vasculature with the blood pool contrast agent CMD-A2-Gd-DOTA in pigs. J Magn Reson Imaging 1999;9:777–85.
  • Wikstrom M, Martinussen HJ, Wikstrom G, Ericsson A, Nyman R, Waldenstrom A, . MR imaging of acute myocardial infarction in pigs using Gd-DTPA-labeled dextran. Acta Radiol 1992;33:301–8.
  • Casali C, Canet E, Obadia FJ, Benderbous S, Desenfant A, Revel D, . Evaluation of Gd-DOTA-labeled dextran polymer as an intravascular MR contrast agent for myocardial perfusion. Acad Radiol 1998;5:S214–S218.
  • Lebduskova P, Kotek J, Hermann P, VanderElst L, Muller RN, Lukes I, . A gadolinium(III) complex of a carboxylic-phosphorus acid derivative of diethylenetriamine covalently bound to insulin, a potential macromolecular MRI contrast agent. Bioconjug Chem 2004;15:881–9.
  • Helbich TH, Gossman A, Mareski PA, Radüchel B, Roberts TPL, Shames DM, . A new polysaccharide macromolecular contrast agent for MR imaging: biodistribution and imaging characteristics. J Magn Reson Imaging 2000;11:694–701.
  • Ladd DL, Hollister R, Peng X, Wei D, Wu G, Delecki D, . Polymeric gadolinium chelate magnetic resonance imaging contrast agents: design, synthesis, and properties. Bioconjug Chem 1999;10:361–70.
  • Andersson A, Lindgren A, Hultberg B. Effect of thiol oxidation and thiol export from erythrocytes on determination of redox status of homocysteine and other thiols in plasma from healthy subjects and patients with cerebral infarction. Clin Chem 1995;41:361–6.
  • Deneke SM. Thiol-based antioxidants. Curr Top Cell Regul 2000;36:151–80.
  • Lu ZR, Ye F, Vaidya A. Polymer platforms for drug delivery and biomedical imaging. J Control Release 2007;122:269–77.
  • Lu ZR, Parker DL, Goodrich KC, Wang X, Dalle JG, Buswell HR. Extracellular biodegradable macromolecular gadolinium(III) complexes for MRI. Magn Reson Med 2004;51:27–34.
  • Zong Y, Wang X, Goodrich KC, Mohs AM, Parker DL, Lu ZR. Contrast-enhanced MRI with new biodegradable macromolecular Gd(III) complexes in tumor-bearing mice. Magn Reson Med 2005;53:835–42.
  • Mohs AM, Wang X, Goodrich KC, Zong Y, Parker DL, Lu ZR. PEG-g-poly(GdDTPA-co-L-cystine): a biodegradable macromolecular blood pool contrast agent for MR imaging. Bioconjug Chem 2004;15:1424–30.
  • Mohs AM, Zong Y, Guo J, Parker DL, Lu ZR. PEG-g-poly(GdDTPA-co-L-cystine): effect of PEG chain length on in vivo contrast enhancement in MRI. Biomacromolecules 2005;6:2305–11.
  • Wang X, Feng Y, Ke T, Schabel M, Lu ZR. Pharmacokinetics and tissue retention of (Gd-DTPA)-cystamine copolymers, a biodegradable macromolecular magnetic resonance imaging contrast agent. Pharm Res 2005;22:596–602.
  • Feng Y, Zong Y, Ke T, Jeong EK, Parker DL, Lu ZR. Pharmacokinetics, biodistribution and contrast enhanced MR blood pool imaging of Gd-DTPA cystine copolymers and Gd-DTPA cystine diethyl ester copolymers in a rat model. Pharm Res 2006;23:1736–42.
  • Nguyen TD, Spincemaille P, Vaidya A, Prince MR, Lu ZR, Wang Y. Contrast-enhanced magnetic resonance angiography with biodegradable (Gd-DTPA)-cystamine copolymers: comparison with MS-325 in a swine model. Mol Pharm 2006;3:558–65.
  • Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, . A new class of polymers: starburst dendritic macromolecules. Polymer Journal 1985;17:117–32.
  • Newkome GR, Yao Z, Baker GR, Gupta VK. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 1985;50:2003–4.
  • Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990;112:7638–47.
  • Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis 1978;1978:155–8.
  • Stefan H. Functionalizing the interior of dendrimers: synthetic challenges and applications. Journal of Polymer Science Part A: Polymer Chemistry 2003;41:1047–58.
  • Majoral JP, Caminade AM. Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi). Chem Rev 1999;99:845–80.
  • Bryant LH, Brechbiel MW, Wu C, Bulte JW, Herynek V, Frank JA. Synthesis and relaxometry of high generation (G = 5,7,9, and 10) PAMAM dendrimer-DOTA-gadolinium chelates. J Magn Reson Imaging 1999;9:348–52.
  • Misselwitz B, Schmitt-Willich H, Ebert W, Frenzel T, Weinmann H-J. Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent. MAGMA 2001;12:128–34.
  • Kobayashi H, Brechbiel M. Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol 2004;5:539–49.
  • Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Konishi J, . Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimer-based MR contrast agents. J Magn Reson Imaging 2001;14:705–13.
  • Kobayashi H, Sato N, Hiraga A, Saga T, Nakamoto Y, Ueda H, . 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn Reson Med 2001;45:454–60.
  • Sato N, Kobayashi H, Hiraga A, Saga T, Togashi K, Konishi J, . Pharmacokinetics and enhancement patterns of macromolecular MR contrast agents with various sizes of polyamidoamine dendrimer cores. Magn Reson Med 2001;46:1169–73.
  • Kobayashi H, Kawamoto S, Jo S, Sato N, Saga T, Hiraga A, . Renal tubular damage detected by dynamic micro-MRI with a dendrimer-based MR contrast agent. Kidney Int 2002;61:1980–5.
  • Kobayashi H, Sato N, Kawamoto S, Saga T, Hiraga A, Ishimori T, . Novel intravascular macromolecular MRI contrast agent with generation-4 polyamidoamine dendrimer core: accelerated renal excretion with coinjection of lysine. Magn Reson Med 2001;46:457–64.
  • Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, . Positive effects of polyethylene glycol conjugation to generation-4 polyamidoamine dendrimers as macromolecular MR contrast agents. Magn Reson Med 2001;46:781–8.
  • Wang S, Brechbiel MW, Wiener EC. Characteristics of a new MRI contrast agent prepared from polypropylenimine dendrimers generation 2. Invest Radiol 2003;38:662–8.
  • Kobayashi H, Kawamoto S, Jo S, Bryant LH, Brechbiel MW, Star RA. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between size and cores. Bioconjug Chem 2003;14:388–94.
  • Kobayashi H, Sato N, Kawamoto S, Saga T, Hiraga A, Laz Haque T, . Comparison of the macromolecular MR contrast agents with ethylenediamine-core versus ammonia-core generation-6 polyamidoamine dendrimer. Bioconjug Chem 2001;12:100–7.
  • Kobayashi H, Wu C, Kim MK, Paik CH, Carrasquillo JA, Brechbiel MW. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug Chem 1999;10:103–11.
  • Su M, Mühler A, Lao X, Nalcioglu O. Tumor characterization with dynamic contrast-enhanced MRI using MR contrast agents of various molecular weights. Magn Reson Med 1998;39:259–69.
  • Gerretsen S, Versluis B, Bekkers S, Leiner T. Cardiac cine MRI: comparison of 1.5 T, non-enhanced 3.0 T and blood pool enhanced 3.0 T imaging. Eur J Radiol 2008;65:80–5.
  • Shreve P, Aisen AM. Monoclonal antibodies labeled with polymeric paramagnetic ion chelates. Magn Reson Med 1985;3:336–40.
  • Wu C, Brechbiel MW, Kozak RW, Gansow OA. Metal- chelate-dendrimer-antibody constructs for use in radioimmunotherapy and imaging. Bioorg Med Chem Lett 1994;4:449–54.
  • Kobayashi H, Sato N, Saga T, Nakamoto Y, Ishimori T, Toyama S, . Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med 2000;27:1334–9.
  • Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res 1991;51:5329–38.
  • Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, . Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 1992;52:3396–401.
  • Wiener EC, Konda S, Shadron A, Brechbiel M, Gansow O. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest Radiol 1997;32:748–54.
  • Konda S, Aref M, Brechbiel MW, Wiener EC. Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor. Invest Radiol 2000;35:50–7.
  • Yao Z, Zhang M, Sakahara H, Saga T, Arano Y, Konishi J. Avidin targeting of intraperitoneal tumor xenografts. J Natl Cancer Inst 1998;90:25–9.
  • Yao Z, Zhang M, Sakahara H, Nakamoto Y, Higashi T, Zhao S, . The relationship of glycosylation and isoelectric point with tumor accumulation of avidin. J Nucl Med 1999;40:479–83.
  • Kobayashi H, Kawamoto S, Saga T, Sato N, Ishimori T, Konishi J, . Avidin-dendrimer-(1B4M-Gd)(254): a tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjug Chem 2001;12: 587–93.
  • Launer HF, Fraenkel-Conrat H. The avidin-biotin equilibrium. J Biol Chem 1951;125–132:125–32.
  • Green NM. Avidin. 3. The nature of the biotin-binding site. J Biochem 1963;89:599–609.
  • Kobayashi H, Kawamoto S, Star RA, Waldmann TA, Brechbiel MW, Choyke PL. Activated clearance of a biotinylated macromolecular MRI contrast agent from the blood pool using an avidin chase. Bioconjug Chem 2003;14: 1044–7.
  • Xu H, Regino CAS, Koyama Y, Hama Y, Gunn AJ, Bernardo M, . Preparation and preliminary evaluation of a biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality magnetic resonance and fluorescence imaging. Bioconjug Chem 2007;18:1474–82.
  • Talanov VS, Regino CAS, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 2006;6:1459–63.
  • Haag R, Pickaert G. Smart dendrimers and dendritic nanoarchitectures synthesis, structure and applications. Kono K, Arshady R. Smart nano and microparticles, The MML series. London: Kentus Books; 2006. 153–210.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.